NASA launches a rocket at t = 0 seconds. Its height, in meters above sea-level, as a function of time is given by

The sea level is represented by h = 0, therefore, to find the corresponding time when h splashes into the ocean we have to solve for t the following equation:

Using the quadratic formula, the solution for our problem is

The rocket splashes after 26.845 seconds.
The maximum of this function happens at the root of the derivative. Differentiating our function, we have

The root is

Then, the maximum height is

1029.99 meters above sea level.
Answers
1. B) 31
2. B) 4
3. A) 15
4. D) 24
5. A) 3
MARK BRAINLEIST PLS THIS TOOK A LOT OF TIME
The formula for the quadratic formula is x (c in this case) = (-b(+/-)√(b²-4ac))/2a
This is used for an equation in standard quadratic form: ax² + bx + c = 0
1.) Put it in the correct form, if not already in it.
Ex. c² + 6c + 8 = 0
2.) Identify each part of the equation:
a = 1 (the leading coefficient), b = 6 (the coefficient in front of the second variable), c = 8
3.) Plug in each variable answer
c = (-6(+/-)√(6²-4(1)(8))/2(1)
4.) Simplify
c = (-6(+/-)√(36-(4*8))/2
c = (-6(+/-)√(36-32))/2
c = (-6(+/-)√(4))/2
c = (-6(+/-)2)/2
*Here, the equation splits in two. It becomes:
c = (-6+2)/2 AND c = (-6-2)/2
*Simplify again:
c = -4/2 AND c = -8/2
c = -2 AND c = -4
The answers c = -2 and c = -4 would solve the given equation.
Hope this helps! :)
Answer:
are you talking about links?
Step-by-step explanation:
yeah they can get annoying