Answer:
It's located in the third quadrant
(X,Y)
Step-by-step explanation:
Answer:
3 (x^6 y^4)^(1/3)
Step-by-step explanation:
The intersecting secant theorem states the relationship between the two intersecting secants of the same circle. The given problems can be solved using the intersecting secant theorem.
<h3>What is Intersecting Secant Theorem?</h3>
When two line secants of a circle intersect each other outside the circle, the circle divides the secants into two segments such that the product of the outside segment and the length of the secant are equal to the product of the outside segment other secant and its length.
a(a+b)=c(c+d)
1.)
6(x+6) = 5(5+x+3)
6x + 36 = 25 + 5x + 15
x = 4
2.)
4(2x+4)=5(5+x)
8x + 16 = 25 + 5x
3x = 9
x = 3
3.)
8x(6x+8x) = 7(9+7)
8x(14x) = 112
112x² = 112
x = 1
4.)
(x+3)² = 16(x-3)
x² + 9 + 6x = 16x - 48
x² - 10x - 57 = 0
x = 14.0554
Learn more about Secant:
brainly.com/question/10128640
#SPJ1
Answer:
- table: 14, 16, 18
- equation: P = 2n +12
Step-by-step explanation:
Perimeter values will be ...
rectangles . . . perimeter
1 . . . 14
2 . . . 16
3 . . . 18
__
The perimeter of a figure is twice the sum of the length and width. Here, the length is a constant 6. The width is n, the number of rectangles. So, the perimeter is ...
P = 2(6 +n) = 12 +2n
Your equation is ...
P = 2n +12 . . . . . . . . perimeter P of figure with n rectangles.
_____
<em>Additional comment</em>
You may be expected to write the equation using y and x for the perimeter and the number of rectangles. That would be ...
y = 2x +12 . . . . . . . . . perimeter y of figure with x rectangles
Answer:
area of this circle: 490.6 inch²
Step-by-step explanation:
area of circle: π(radius)²
Here the diameter is given 25 inch, so the radius will be half: 25/2 → 12.5 in
using the formula:
3.14(12.5)²
490.625 inch²
490.6 inch²____rounded to nearest tenth.