Answer:
This question is incomplete as it lacks options. However, it can be answered based on general knowledge of the DNA structure.
Hydrogen bonds in a DNA are located between the nucleotides that holds the double stranded DNA molecules.
Explanation:
Deoxyribonucleic acid (DNA) is the genetic material in living cells. The DNA molecule is made up of nucleotides monomers. However, since the DNA molecule is double-stranded, the nucleotides are of two chains composed of four nucleotide subunits viz: Adenine (A), Thymine (T), Guanine (G) and Cytosine (C).
The two chains of nucleotides in a DNA molecule are called strands. Each strand is bonded to one another by the nucleotides using complementary base pairing i.e. A-T, G-C. The bonds between the nucleotidew of each strand is called HYDROGEN BOND.
Hence, HYDROGEN BONDS in a DNA molecule is located in between two nucleotides of each strand. That is, hydrogen bond holds Adenine to Thymine and Guanine to Cytosine.
The correct answer is - satellite.
The satellites are something that is crucial for the functioning of the modern day world in pretty much all aspects. They are also very important in the climatology and meteorology. The satellites are able to monitor the whole planet, thus through them it can easily be seen where the air masses are moving, what type of air masses are moving towards where, their speed of the air masses, is there clouds, and if there is where are they moving, formation of large storms etc. ll of these information from the monitoring of the satellites go to the weather stations, where the weather forecasts are made, and than through the media reach the people all over the world.
I think the answer is A or D
Answer:
The membrane potential of a nerve cell will depolarize if there is an increase in the positive ions inside the cell.
Explanation:
When nerves are in resting potential it is -70mV. In this stage interior of the cell is negatively charged and outside is more positive. When depolarization occurs the inside cell becomes positive.
This is due to the rush of sodium ions into the cell by voltage-gated channels. Now the inside charge is more positive and the chloride ions move out of the cell. Thus outside becomes more negative.
After some time of depolarization stage, potassium ions move out of the cell making the nerve cell again negative. Now the depolarized stage becomes repolarized by the entry of potassium ions.
During depolarization, the potential of the cell is -55mV. When repolarization occurs, it is again -70mV. But the potassium channels are open and some of the potassium ions move out of the cell making the inside environment more negative. This is known as hyperpolarization condition.
This hyperpolarization remains for a short period where action potential can't occur. This period is called the refractory period. Again potassium ions enter into the cell. This results in the resting potential of the neuron again.