We have a three unknown, 4 equation homogeneous system. These always have at least (0,0,0) as a solution. Let's write the equations, one column at a time.
1a + 0b + 0c = 0
-1a + 1b +0c = 0
0a - 1b + c = 0
0a + 0b + -1 c = 0
We could do row reduction but these are easy enough not to bother.
Equation 1 says
a = 0
Equation 4 says
c = 0
Substituting in the two remaining,
-1(0) + 1b + 0c = 0
b = 0
0(0) - 1b + 0 = 0
b = 0
The only 3-tuple satisfying the vector equation is (a,b,c)=(0,0,0)
By definition, two angles are supplementary if the sum of them is 180 degrees. In this case (see figure attached with the answer) the line AD is transversal to lines AB and DC. This is a proof of the Same-side interior angle theorem.
This theorem states that if we have two lines that are parallel and we intercept those two lines with a line that is transversal to both, same-side interior angles are formed, and also sum 180º, in other words, they are supplementary angles.
Then:
By the definition of a parallelogram, AB∥DC. AD is a transversal between these sides, so ∠A and ∠D are <em><u>same-side interior angles</u></em>. Because AB and DC are <em><u>parallel</u></em>, the same-side interior angles must be <em><u>supplementary</u></em> by the same-side interior angles theorem. Therefore, ∠A and ∠D are supplementary.
This looks super duper hard wish I can solve it out
Answer:
He lost 147.35 marks
Step-by-step explanation:
Take the total marks and subtract the marks he got to find the marks he lost
600-452.65= 147.35