1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovikov84 [41]
3 years ago
10

Given that f(x) = 9x2 − 180, find x

Mathematics
2 answers:
timurjin [86]3 years ago
7 0
-162
Because 9 x 2 = 18
18 - 180 = -162
expeople1 [14]3 years ago
7 0

Answer:

The values of x are x=\sqrt{20},\:x=-\sqrt{20}.

Step-by-step explanation:

We have the function f(x) = 9x^{2} - 180.

To find the value of x, you must set the function to zero

9x^2\:-\:180=0

Next, add 180 to both sides

9x^2-180+180=0+180

Simplify

9x^2=180

Divide both sides by 9

\frac{9x^2}{9}=\frac{180}{9}

Simplify

x^2=20

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=\sqrt{20},\:x=-\sqrt{20}.

You might be interested in
-
alexandr1967 [171]

Answer:

BC.

use the distance formula between each segment

4 0
3 years ago
It says 7/6x= 140 I am lost can somebody please help me
kobusy [5.1K]
7/6x=140

since variable x is multiplied by 7/6, find x by multiplying by the inverse of 7/6 which is 6/7.

7/6x × 6/7 = 140 × 6/7
x= 120
8 0
3 years ago
I need help with all of this
Luda [366]

Answer:

Cold front

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Solve for y thank you
Semenov [28]

Answer: y = 1

Step-by-step explanation:

9x + (3 x 1) = 12

4 0
3 years ago
The problem is attached, thanks.
NeX [460]

Answer:

\displaystyle \frac{dy}{dx} \bigg| \limit_{(1, 4)} = 2

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Coordinates (x, y)
  • Exponential Rule [Root Rewrite]:                                                                 \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}
  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Implicit Differentiation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \sqrt{x} - \sqrt{y} = -1

Point (1, 4)

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                               \displaystyle x^{\frac{1}{2}} - y^{\frac{1}{2}} = -1
  2. [Implicit Differentiation] Basic Power Rule:                                                 \displaystyle \frac{1}{2}x^{\frac{1}{2} - 1} - \frac{1}{2}y^{\frac{1}{2} - 1}\frac{dy}{dx} = 0
  3. [Implicit Differentiation] Simplify Exponents:                                               \displaystyle \frac{1}{2}x^{\frac{-1}{2}} - \frac{1}{2}y^{\frac{-1}{2}}\frac{dy}{dx} = 0
  4. [Implicit Differentiation] Rewrite [Exponential Rule - Rewrite]:                   \displaystyle \frac{1}{2x^{\frac{1}{2}}} - \frac{1}{2y^{\frac{1}{2}}}\frac{dy}{dx} = 0
  5. [Implicit Differentiation] Isolate <em>y</em> terms:                                                       \displaystyle -\frac{1}{2y^{\frac{1}{2}}}\frac{dy}{dx} = -\frac{1}{2x^{\frac{1}{2}}}
  6. [Implicit Differentiation] Isolate \displaystyle \frac{dy}{dx}:                                                               \displaystyle \frac{dy}{dx} = \frac{2y^{\frac{1}{2}}}{2x^{\frac{1}{2}}}
  7. [Implicit Differentiation] Simplify:                                                                 \displaystyle \frac{dy}{dx} = \frac{y^{\frac{1}{2}}}{x^{\frac{1}{2}}}

<u>Step 3: Evaluate</u>

  1. Substitute in point [Derivative]:                                                                     \displaystyle \frac{dy}{dx} = \frac{(4)^{\frac{1}{2}}}{(1)^{\frac{1}{2}}}
  2. Exponents:                                                                                                     \displaystyle \frac{dy}{dx} = \frac{2}{1}
  3. Division:                                                                                                         \displaystyle \frac{dy}{dx} = 2

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Implicit Differentiation

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • Dimes 15
    14·2 answers
  • A carnival booth made $88 selling popcorn in one day . It made 22 times as much selling cotton candy how much money did the carn
    10·1 answer
  • Why does log 10 100,000 equal to 5?
    15·1 answer
  • Mathematics I need help
    6·1 answer
  • Help me please for brainliest.
    9·1 answer
  • NO LINKS OR ELSE YOU'LL BE REPORTED! Only answer if you're very good at Math.No guessing please.
    5·1 answer
  • Identify the slope and the y-intercept of the following line!<br> y=-3+x
    8·2 answers
  • Need help please hurry !!!!​
    5·1 answer
  • What is the median of this data set 15, 33,51,51,75
    14·2 answers
  • Can you help me find the answer quick
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!