Answer:
Step-by-step explanation:
Mike is at the shop for school supplies. He sees some pencils he wants to buy. He sees that if he buys twelve of the same item, the store will take off $8. How much will twelve pencils cost at the store if one pencil is $5.99?
Equation: 12x-8
12x-8 =
12(5.99) - 8 =
71.88 - 8 =
$63.88
Hope this helps:)
![\huge \boxed{\mathbb{QUESTION} \downarrow}](https://tex.z-dn.net/?f=%20%5Chuge%20%5Cboxed%7B%5Cmathbb%7BQUESTION%7D%20%5Cdownarrow%7D)
![\begin{bmatrix} \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \end{bmatrix} \begin{bmatrix} \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { - 1 } & { 1 } & { 5 } \end{array} \end{bmatrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bbmatrix%7D%20%5Cbegin%7Barray%7D%20%7B%20l%20l%20%7D%20%7B%202%20%7D%20%26%20%7B%203%20%7D%20%5C%5C%20%7B%205%20%7D%20%26%20%7B%204%20%7D%20%5Cend%7Barray%7D%20%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%20%5Cbegin%7Barray%7D%20%7B%20l%20l%20l%20%7D%20%7B%202%20%7D%20%26%20%7B%200%20%7D%20%26%20%7B%203%20%7D%20%5C%5C%20%7B%20-%201%20%7D%20%26%20%7B%201%20%7D%20%26%20%7B%205%20%7D%20%5Cend%7Barray%7D%20%5Cend%7Bbmatrix%7D)
![\large \boxed{\mathbb{ANSWER\: WITH\: EXPLANATION} \downarrow}](https://tex.z-dn.net/?f=%20%5Clarge%20%5Cboxed%7B%5Cmathbb%7BANSWER%5C%3A%20WITH%5C%3A%20EXPLANATION%7D%20%5Cdownarrow%7D)
![\begin{bmatrix} \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \end{bmatrix} \begin{bmatrix} \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { - 1 } & { 1 } & { 5 } \end{array} \end{bmatrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bbmatrix%7D%20%5Cbegin%7Barray%7D%20%7B%20l%20l%20%7D%20%7B%202%20%7D%20%26%20%7B%203%20%7D%20%5C%5C%20%7B%205%20%7D%20%26%20%7B%204%20%7D%20%5Cend%7Barray%7D%20%5Cend%7Bbmatrix%7D%20%5Cbegin%7Bbmatrix%7D%20%5Cbegin%7Barray%7D%20%7B%20l%20l%20l%20%7D%20%7B%202%20%7D%20%26%20%7B%200%20%7D%20%26%20%7B%203%20%7D%20%5C%5C%20%7B%20-%201%20%7D%20%26%20%7B%201%20%7D%20%26%20%7B%205%20%7D%20%5Cend%7Barray%7D%20%5Cend%7Bbmatrix%7D)
In matrix multiplication, the number of columns in the 1st matrix is equal to the number of rows in the 2nd matrix.
![\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}2&0&3\\-1&1&5\end{matrix}\right)](https://tex.z-dn.net/?f=%5Cleft%28%5Cbegin%7Bmatrix%7D2%263%5C%5C5%264%5Cend%7Bmatrix%7D%5Cright%29%5Cleft%28%5Cbegin%7Bmatrix%7D2%260%263%5C%5C-1%261%265%5Cend%7Bmatrix%7D%5Cright%29%20)
Multiply each element of the 1st row of the 1st matrix by the corresponding element of the 1st column of the 2nd matrix. Then add these products to obtain the element in the 1st row, 1st column of the product matrix.
![\left(\begin{matrix}2\times 2+3\left(-1\right)&&\\&&\end{matrix}\right)](https://tex.z-dn.net/?f=%5Cleft%28%5Cbegin%7Bmatrix%7D2%5Ctimes%202%2B3%5Cleft%28-1%5Cright%29%26%26%5C%5C%26%26%5Cend%7Bmatrix%7D%5Cright%29%20)
The remaining elements of the product matrix are found in the same way.
![\left(\begin{matrix}2\times 2+3\left(-1\right)&3&2\times 3+3\times 5\\5\times 2+4\left(-1\right)&4&5\times 3+4\times 5\end{matrix}\right)](https://tex.z-dn.net/?f=%5Cleft%28%5Cbegin%7Bmatrix%7D2%5Ctimes%202%2B3%5Cleft%28-1%5Cright%29%263%262%5Ctimes%203%2B3%5Ctimes%205%5C%5C5%5Ctimes%202%2B4%5Cleft%28-1%5Cright%29%264%265%5Ctimes%203%2B4%5Ctimes%205%5Cend%7Bmatrix%7D%5Cright%29%20)
Simplify each element by multiplying the individual terms.
![\left(\begin{matrix}4-3&3&6+15\\10-4&4&15+20\end{matrix}\right)](https://tex.z-dn.net/?f=%5Cleft%28%5Cbegin%7Bmatrix%7D4-3%263%266%2B15%5C%5C10-4%264%2615%2B20%5Cend%7Bmatrix%7D%5Cright%29%20)
Now, sum each element of the matrix.
![\large\boxed{\boxed{\left(\begin{matrix}1&3&21\\6&4&35\end{matrix}\right) }}](https://tex.z-dn.net/?f=%20%5Clarge%5Cboxed%7B%5Cboxed%7B%5Cleft%28%5Cbegin%7Bmatrix%7D1%263%2621%5C%5C6%264%2635%5Cend%7Bmatrix%7D%5Cright%29%20%7D%7D)
Answer: 15/16
Step-by-step explanation:
There will be 16 outcomes for 4 coins=2^4
Probability of only head is : P(C)=1/16
P(C) + P(C') = 1
P(C') = 1 - P(C)
P(C') = 1 - 1/16
Take the l.c.m
P(C') = (16-1) / 16
P(C') = 15/16
So the probability of getting at least 1 tail is 15/16
Answer:
The swimmer must complete the 200-meter backstroke in no more than 130 seconds.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
![\mu = 141, \sigma = 7](https://tex.z-dn.net/?f=%5Cmu%20%3D%20141%2C%20%5Csigma%20%3D%207)
Fastest 6%
At most in the 6th percentile, that is, at most a value of X when Z has a pvalue of 0.07. So we have to find X when Z = -1.555.
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
![-1.555 = \frac{X - 141}{7}](https://tex.z-dn.net/?f=-1.555%20%3D%20%5Cfrac%7BX%20-%20141%7D%7B7%7D)
![X - 141 = -1.555*7](https://tex.z-dn.net/?f=X%20-%20141%20%3D%20-1.555%2A7)
![X = 130](https://tex.z-dn.net/?f=X%20%3D%20130)
The swimmer must complete the 200-meter backstroke in no more than 130 seconds.