1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BartSMP [9]
3 years ago
5

Two angles are supplementary. The larger angle is 15 more than 10 times the smaller angle. Find the measure of each angle.

Mathematics
1 answer:
jenyasd209 [6]3 years ago
7 0

Answer:

The angles are 165 and 15

Step-by-step explanation:

Supplementary angles whose sum is 180°

Let A and B be the two supplementary angles.

Let A be the larger angle and B the smaller angle.

From the question, we were told that the large angle (A) is 15 more than 10 times the smaller angle ie

A = 15 + 10B

We can solve for the value of A and B by doing the following:

A + B = 180

But A = 15 + 10B

15 + 10B + B = 180

Collect like terms

10B + B = 180 — 15

11B = 165

Divide both side by the coefficient of B i.e 11

B = 165/11

B = 15

A = 15 + 10B

A = 15 + 10(15)

A = 15 + 150

A = 165

The angles are 165 and 15

You might be interested in
What is the answer i need help
erica [24]

Answer:

$924.28

Step-by-step explanation:

Hope this is right!!

4 0
3 years ago
PLEASE HELP ME WITH THIS IF U ARE GOOD @ MATH ! WILL MARK 5 STARS THANKS AND BRAINLEST !!!!!!
lys-0071 [83]

Answer:

1) The square ABCD was dilated to form square A'B'C'D' using a scale factor of 1/2

2) The pair of polygons is not similar because their corresponding sides are not proportionals.

Step-by-step explanation:

1) Scale factor: f=?

f=Final dimension / Initial dimension

f=A'B'/AB=B'C'/BC=C'D'/CD=A'D'/AD

f=2/4

Simplifying the fraction dividing the numerator and denominator by 2:

f= (2/2) / (4/2)

f=1/2


2) Let's check the proportion between their corresponding sides:

AM/A'M'=(11 ft)/(9.4 ft)=1.17

HT/H'T'=(11 ft)/(9.4 ft)=1.17

HM/H'M'=(10 ft)/(8.4 ft)=1.19

AT/A'T'=(10 ft)/(8.4 ft)=1.19

AM/A'M'=HT/H'T'=1.17 but different to 1.19=HM/H'M'=AT/A'T'

Then, the pair of polygons is not similar

4 0
3 years ago
Read 2 more answers
If this meme has made 200 dollars,and 590 next month,how much that in total
Contact [7]
It would be 709 if u add them up
6 0
3 years ago
Read 2 more answers
Hi, could someone help me differentiate Q6 b with the use if ln​
Lady bird [3.3K]

Answer:

\displaystyle \frac{dy}{dx} = \frac{-(2x - 3)(6x - 43)}{(3x + 4)^4}

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e
  • Logarithmic Property [Dividing]:                                                                   \displaystyle log(\frac{a}{b}) = log(a) - log(b)
  • Logarithmic Property [Exponential]:                                                             \displaystyle log(a^b) = b \cdot log(a)

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation
  • Implicit Differentiation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{(2x - 3)^2}{(3x + 4)^3}

<u>Step 2: Rewrite</u>

  1. [Equality Property] ln both sides:                                                                 \displaystyle lny = ln \bigg[ \frac{(2x - 3)^2}{(3x + 4)^3} \bigg]
  2. Expand [Logarithmic Property - Dividing]:                                                   \displaystyle lny = ln(2x - 3)^2 - ln(3x + 4)^3
  3. Simplify [Logarithmic Property - Exponential]:                                             \displaystyle lny = 2ln(2x - 3) - 3ln(3x + 4)

<u>Step 3: Differentiate</u>

  1. Implicit Differentiation:                                                                                 \displaystyle \frac{dy}{dx}[lny] = \frac{dy}{dx} \bigg[ 2ln(2x - 3) - 3ln(3x + 4) \bigg]
  2. Logarithmic Differentiation [Derivative Rule - Chain Rule]:                       \displaystyle \frac{1}{y} \ \frac{dy}{dx} = 2 \bigg( \frac{1}{2x - 3} \bigg)\frac{dy}{dx}[2x - 3] - 3 \bigg( \frac{1}{3x + 4} \bigg) \frac{dy}{dx}[3x + 4]
  3. Basic Power Rule:                                                                                         \displaystyle \frac{1}{y} \ \frac{dy}{dx} = 4 \bigg( \frac{1}{2x - 3} \bigg) - 9 \bigg( \frac{1}{3x + 4} \bigg)
  4. Simplify:                                                                                                         \displaystyle \frac{1}{y} \ \frac{dy}{dx} = \frac{4}{2x - 3} - \frac{9}{3x + 4}
  5. Isolate  \displaystyle \frac{dy}{dx}:                                                                                                     \displaystyle \frac{dy}{dx} = y \bigg( \frac{4}{2x - 3} - \frac{9}{3x + 4} \bigg)
  6. Substitute in <em>y</em> [Derivative]:                                                                           \displaystyle \frac{dy}{dx} = \frac{(2x - 3)^2}{(3x + 4)^3} \bigg( \frac{4}{2x - 3} - \frac{9}{3x + 4} \bigg)
  7. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{(2x - 3)^2}{(3x + 4)^3} \bigg[ \frac{4(3x + 4) - 9(2x - 3)}{(2x - 3)(3x +4)} \bigg]
  8. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-(2x - 3)(6x - 43)}{(3x + 4)^4}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

8 0
3 years ago
A copy machine makes
tankabanditka [31]
4 min 30 sec = 4.5 minutes.
Divide 108 by 4.5 to get the UNIT RATE which is per 1 minute.
108/4.5 = 24 pages per min
7 0
3 years ago
Other questions:
  • Each side of a square is 2x - 6 yards long. If the perimeter of the square is 72 yards what is the value of x?
    11·1 answer
  • 9. Express 400cm3 as a fraction of 2 litres
    9·1 answer
  • Jake is graphing data about the elevation at different points along a hiking trail and the outside temperature at those points.
    13·2 answers
  • a lab technician needs to combine 30% alcohol solution with 35% alcohol solution to make 5l of 33% alcohol solution . how many l
    14·1 answer
  • A company’s advertising budget is split between newspaper ads, magazine ads, television ads, and internet ads. The company spend
    15·1 answer
  • A pilot can travel for 140 miles with the wind in the same amount of time as 360 miles against the wind. Find the speed of the w
    11·1 answer
  • The result<br><br> [5+10]/4=
    12·2 answers
  • Print Questions
    11·1 answer
  • Ben eats 5 apples<br><br>calculate weigh of ben and then<br><br>calculus the mass of sun<br><br>​
    6·1 answer
  • Cristiano ronaldo has a pass success percentage of 86% in the uefa champions league. this measure
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!