Option C:
is the predicted population when ![x=15](https://tex.z-dn.net/?f=x%3D15)
Explanation:
The regression equation for an exponential data is ![\log y=0.14x+0.4](https://tex.z-dn.net/?f=%5Clog%20y%3D0.14x%2B0.4)
Where x is the number of years and
y is the population
We need to determine the predicted population when ![x=15](https://tex.z-dn.net/?f=x%3D15)
The population x can be determined by substituting
in the equation ![\log y=0.14x+0.4](https://tex.z-dn.net/?f=%5Clog%20y%3D0.14x%2B0.4)
Thus, we have,
![\log y=0.14(15)+0.4](https://tex.z-dn.net/?f=%5Clog%20y%3D0.14%2815%29%2B0.4)
![\log y=2.1+0.4](https://tex.z-dn.net/?f=%5Clog%20y%3D2.1%2B0.4)
![\log y=2.5](https://tex.z-dn.net/?f=%5Clog%20y%3D2.5)
Using the logarithmic definition
then ![b=a^{c}](https://tex.z-dn.net/?f=b%3Da%5E%7Bc%7D)
![\log _{10}(y)=2.5 \Rightarrow y=10^{2.5}](https://tex.z-dn.net/?f=%5Clog%20_%7B10%7D%28y%29%3D2.5%20%5CRightarrow%20y%3D10%5E%7B2.5%7D)
![y=316.22776 \ldots](https://tex.z-dn.net/?f=y%3D316.22776%20%5Cldots)
Rounding off to the nearest whole number, we get,
![y=316](https://tex.z-dn.net/?f=y%3D316)
Thus, the predicted population when
is 316
Hence, Option C is the correct answer.