1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pantera1 [17]
4 years ago
13

A cubed shaped paperweight has a volume of 216 cm³ What is the length of the paper weight?

Mathematics
1 answer:
viktelen [127]4 years ago
4 0
Answer: The length of the paper weight would be 6 cm.

Explanation: Since the object is a cube that means all sides are the same length so to solve you would do 3√216 and your answer would be 6.
You might be interested in
Given the function f(x) = −5x2 − x + 20, find f(3). −28 −13 62 64
Katyanochek1 [597]

Answer:

Option (a) is correct.

The value of given function  f(x)=-5x^2-x+20 at x = 3 is -28

Step-by-step explanation:

Given : Function f(x)=-5x^2-x+20

We have to find the value of given function at x = 3

Consider the given function  f(x)=-5x^2-x+20

Since, we have tof ind the value of function at x = 3

Put x = 3 in given function f(x)

f(3)=-5(3)^2-(3)+20

Simplify, we have,

f(x)=-45-3+20=-28

Thus,  the value of given function  f(x)=-5x^2-x+20 at x = 3 is -28

5 0
3 years ago
Read 2 more answers
Help with this question please
nadya68 [22]

Answer:

2/16 or 2:16

Step-by-step explanation:

tell me if its wrong

6 0
3 years ago
Write an equation of the line that passes through (−1,3) and is parallel to the line y=2x+2
Komok [63]

Start off by writing the equation y = mx - b. Then plug in what you do know

3 = 2(-1) - b (m is the slope and parallel lines have the same slope). Then solve

3 = -2 - b

<u>+2  +2</u>

5 = b

So y = 2x + 5

6 0
3 years ago
What is the derivative of 1/square root 4x.
Bumek [7]

Answer:

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

Exponential Properties

  • Exponential Property [Rewrite]:                                                                   \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Property [Root Rewrite]:                                                           \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)  

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]

<u>Step 2: Differentiate</u>

  1. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'
  3. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'
  4. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'
  5. Derivative Rule [Basic Power Rule]:                                                             \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

5 0
3 years ago
Please help me with dis ion understand pwese help me :(
Morgarella [4.7K]

Answer:

The formula for calculating the circumference of a circle is 2*pi*r. Because pi does not have an end, we'll use 3.14, since that is the approximate value of pi.

2*6*3.14 = 37.68

The outer rim of the pool is about 37.68 meters long

Step-by-step explanation:

It’s probably 40 because it says about how long not exactly.

I hope this helped

6 0
3 years ago
Read 2 more answers
Other questions:
  • 1. Write a paragraph proof for the following conjecture.
    13·1 answer
  • Tom bought n DVDs for a total cost of 15n - 2 dollars. Which expression represents the cost of each DVD?
    5·1 answer
  • ..............................
    10·1 answer
  • Bode's monthly mortgage payment was $1200 last year, and on average, 11% of each payment was interest. If Bode itemizes deductio
    8·2 answers
  • What is the mixed number of 36/15
    11·2 answers
  • What are the values of a, b, and c in the quadratic equation 0 = 1x2 – 3x – 2?
    12·1 answer
  • What is the equation to the graph on question 1
    5·1 answer
  • !!!!!! ’ ... like Ik there is smart ppl around the world who knows these
    8·1 answer
  • The state fair charges $14 for admission. Each ride costs $6.
    15·1 answer
  • The number of cookies Natalie can bake varies directly with the time she
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!