1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shutvik [7]
3 years ago
10

What is the derivative of 1/square root 4x.

Mathematics
1 answer:
Bumek [7]3 years ago
5 0

Answer:

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

Exponential Properties

  • Exponential Property [Rewrite]:                                                                   \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Property [Root Rewrite]:                                                           \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)  

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]

<u>Step 2: Differentiate</u>

  1. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'
  3. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'
  4. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'
  5. Derivative Rule [Basic Power Rule]:                                                             \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

You might be interested in
From a pool of 12 candidates, the offices of president, vice-president, secretary, and treasurer will be filled. In how many dif
Romashka [77]

Answer:

11,880 different ways.

Step-by-step explanation:

We have been given that from a pool of 12 candidates, the offices of president, vice-president, secretary, and treasurer will be filled. We are asked to find the number of ways in which the offices can be filled.

We will use permutations for solve our given problem.

^nP_r=\frac{n!}{(n-r)!}, where,

n = Number of total items,  

r = Items being chosen at a time.        

For our given scenario n=12 and r=4.

^{12}P_4=\frac{12!}{(12-4)!}

^{12}P_4=\frac{12!}{8!}

^{12}P_4=\frac{12*11*10*9*8!}{8!}

^{12}P_4=12*11*10*9

^{12}P_4=11,880

Therefore, offices can be filled in 11,880 different ways.

     

   

3 0
4 years ago
6)
aleksklad [387]

Answer:

..2.50x + 3.75x = 15..

Step-by-step explanation:

i think

8 0
3 years ago
What irrational number is in between 7.7 ad 7.9 please explain.
Dahasolnce [82]

√62 is your answer

√62 is 7.87400787

3 0
3 years ago
Read 2 more answers
Jasmine and Luke used fea part b
Nostrana [21]

Answer:

huh

Step-by-step explanation:

3 0
4 years ago
Read 2 more answers
Factor the polynomial. Select BOTH of the correct factors from the list given.
stiv31 [10]

Answer:

first one ig

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • −2⋅f(−6)−7⋅g(−7) = ?
    10·1 answer
  • This Question: 1 pt
    15·1 answer
  • 3(5z-7)-2(9z-11)=4(8z-13)-17 solve the equation <br>​
    8·1 answer
  • Draw the graph of 4x-1 on the grid
    7·1 answer
  • What is the sum of the fractions? Use the number line and equivalent fractions to help find the answer.
    11·2 answers
  • Evaluate7.2÷0.38.(Round to the hundredth place as needed.)
    14·1 answer
  • I need help with this one problem please.
    11·1 answer
  • Complete the statements.<br> f(4) is<br> f(x) = 4 when x is
    5·1 answer
  • Simplify to combine the Like Terms
    8·2 answers
  • Drag the geographical features that helped Rome flourish to the box.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!