1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kenny6666 [7]
3 years ago
6

one week she had 38 coins, all of them dimes and quarters. when she added them up, she had a total of 6.95, how many dimes did s

he have
Mathematics
2 answers:
Leona [35]3 years ago
6 0
65 is the highest so yeah hope it helps
Yuki888 [10]3 years ago
6 0
D+q=38, solve for q

q=38-d

And we are told that 25q+10d=695, using q found above we have;

25(38-d)+10d=695

950-25d+10d=695

-15d=-255

d=17

So she had 17 dimes.


You might be interested in
5/6+2i<br><br><br>Aka<br><br><br> 5<br><br>___<br><br>6+2y<br>Ignore my answer its probably wrong
liberstina [14]

Answer:

   (3/4) -(1/4)i

Step-by-step explanation:

Your answer is correct.

\dfrac{5}{6+2i}=\dfrac{5(3-i)}{2(3+i)(3-i)}=\dfrac{5(3-i)}{2(9+1)}\\\\=\dfrac{3-i}{4}=\dfrac{3}{4}-\dfrac{1}{4}i

8 0
3 years ago
6 1 2 3 + + 2 3 4 Situation: Find the value of this fraction computation: 6(1/2+3/4+2/3)​
MArishka [77]

Answer:

11.5 gotchu 100% correct

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
Lie detectors have a 15% chance of concluding that a person is lying even when they are telling the truth. a bank conducts inter
Otrada [13]
Part A:

Given that lie <span>detectors have a 15% chance of concluding that a person is lying even when they are telling the truth. Thus, lie detectors have a 85% chance of concluding that a person is telling the truth when they are indeed telling the truth.

The case that the lie detector correctly determined that a selected person is saying the truth has a probability of 0.85
Thus p = 0.85

Thus, the probability that </span>the lie detector will conclude that all 15 are telling the truth if <span>all 15 applicants tell the truth is given by:

</span>P(X)={ ^nC_xp^xq^{n-x}} \\  \\ \Rightarrow P(15)={ ^{15}C_{15}(0.85)^{15}(0.15)^0} \\  \\ =1\times0.0874\times1=0.0874
<span>

</span>Part B:

Given that lie detectors have a 15% chance of concluding that a person is lying even when they are telling the truth. Thus, lie detectors have a 85% chance of concluding that a person is telling the truth when they are indeed telling the truth.

The case that the lie detector wrongly determined that a selected person is lying when the person is actually saying the truth has a probability of 0.25
Thus p = 0.15

Thus, the probability that the lie detector will conclude that at least 1 is lying if all 15 applicants tell the truth is given by:

P(X)={ ^nC_xp^xq^{n-x}} \\ \\ \Rightarrow P(X\geq1)=1-P(0) \\  \\ =1-{ ^{15}C_0(0.15)^0(0.85)^{15}} \\ \\ =1-1\times1\times0.0874=1-0.0874 \\  \\ =0.9126


Part C:

Given that lie detectors have a 15% chance of concluding that a person is lying even when they are telling the truth. Thus, lie detectors have a 85% chance of concluding that a person is telling the truth when they are indeed telling the truth.

The case that the lie detector wrongly determined that a selected person is lying when the person is actually saying the truth has a probability of 0.15
Thus p = 0.15

The mean is given by:

\mu=npq \\  \\ =15\times0.15\times0.85 \\  \\ =1.9125


Part D:

Given that lie detectors have a 15% chance of concluding that a person is lying even when they are telling the truth. Thus, lie detectors have a 85% chance of concluding that a person is telling the truth when they are indeed telling the truth.

The case that the lie detector wrongly determined that a selected person is lying when the person is actually saying the truth has a probability of 0.15
Thus p = 0.15

The <span>probability that the number of truthful applicants classified as liars is greater than the mean is given by:

</span>P(X\ \textgreater \ \mu)=P(X\ \textgreater \ 1.9125) \\  \\ 1-[P(0)+P(1)]
<span>
</span>P(1)={ ^{15}C_1(0.15)^1(0.85)^{14}} \\  \\ =15\times0.15\times0.1028=0.2312<span>
</span>
8 0
3 years ago
How can you tell from an equation that a relation is quadratic
monitta

Answer:

if the equation is f(x)=ax^2+bx+c

Step-by-step explanation:

5 0
3 years ago
Acertijo.
Cerrena [4.2K]

La edad de cada uno de los integrantes del acertijo es:

  • <u>Luisa = 3 años </u>
  • <u>Juan = 6 años </u>
  • <u>Carmen = 8 años</u>

<em>Cálculo por medio de ecuaciones y el </em><em>método de igualación</em>.

Haciendo uso de la información brindada en el ejercicio, se procede a formular variables con las cuales se calcularán las ecuaciones, por lo tanto:

  • <em>X = Edad de Luisa</em>
  • <em>Y = Edad de Juan</em>
  • <em>Z = Edad de Carmen</em>

Con el enunciado: <em>"Luisa es 3 años más joven que su hermano Juan"</em> se crea la primera ecuación:

  • 1. Y = X + 3

Con el enunciado: <em>"Su hermana Carmen es 2 años mayor que Juan"</em>, se crea la segunda ecuación:

  • 2. Z = Y + 2

Y con el enunciado: <em>"Juan tiene el doble de edad que Luisa"</em>, se crea la tercera ecuación:

  • 3. X = \frac{Y}{2}

Ahora, utilizando el método de igualación, se reemplaza la <em>tercera ecuación en la primera</em>:

  • Y = X + 3
  • Y = (\frac{Y}{2}) + 3

Y se procede a sumar:

  • Y = (\frac{Y}{2}) + 3
  • Y = \frac{Y+6}{2}

El dividendo se pasa al otro lado de la igualdad a multiplicar:

  • 2Y = Y + 6

Y la variable "Y" que está sumando, se pasa al otro lado de la igualdad a restar:

  • 2Y - Y = 6
  • <u>Y = 6</u>

Con el valor de Y (edad de Juan) <em>se calcula X con la tercera ecuación</em>:

  • X = \frac{Y}{2}
  • X = \frac{6}{2}
  • <u>X = 3</u>

Una vez calculado el valor de X (edad de Luisa), se procede a <em>calcular el valor de Z con la segunda ecuación</em>:

  • Z = Y + 2
  • Z = 6 + 2
  • <u>Z = 8</u>

Por lo tanto, se calcula que <u>la edad de Luisa es 3 años, la edad de Juan es 6 años y la edad de Carmen es 8 años</u>.

Más información sobre ecuaciones:

brainly.com/question/15415929?referrer=searchResults

8 0
2 years ago
Other questions:
  • What is the volume in cubic yards of a green house that is 50 yards long, 20 feet wide, and 10 feet high
    8·1 answer
  • Help!! Image attached, will put most brainliest
    13·2 answers
  • What is 1,023 factorial
    10·2 answers
  • You randomly draw a marble from a bag of marbles that contains 8 blue marbles, 5 green marbles, and 8 red
    13·2 answers
  • In a class, every student knows French or German (or both). 15 students know French, and 17 students know German.
    8·2 answers
  • Can some one please help me !!!!Indicate the method you would use to prove the two 's . If no method applies, enter "none".HL
    7·1 answer
  • John ran the 100-m dash with a time of 9.81 sec. if this pace could be maintained for an entire 26-mi marathon, what would his t
    8·1 answer
  • Use the substitution method to solve the system of equations. y = -8x 4x - y = 3 O AG-2 O B. (6-1 oc c. (6.-4 D. G-4​
    12·2 answers
  • What is 2,356 divided by 27​
    15·2 answers
  • Which equation is a direct variation function? y=x y=1/4x+2 y=x2 y=4​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!