Answer:
The zeros are:

- The function has three distinct real zeros.
Hence, option (B) is true.
Step-by-step explanation:
Given the expression

Let us determine the zeros of the function by putting h(x) = 0 and solving the expression

switch sides

as

so

Using the zero factor principle
so


Thus, the zeros are:

It is clear that there are three zeros and all the zeros are distinct real numbers.
Therefore,
- The function has three distinct real zeros.
Hence, option (B) is true.
Answer:
The mean of W is 55 ounces.
The standard deviation of W is 4.33 ounces.
Step-by-step explanation:
Let X: weight of a red delicious apple, and B: the weight of the box and packing material.
The distribution that will represent W: the total weight of the packaged 5 randomly selected apples will be also normally distributed.
Applying the property of the mean:
, the mean of W will be:

Applying the property of the variance:
, the variance of W will be:

The mean standard deviation of W will be the squared root of V(W):

The mean of W is 55 ounces.
The standard deviation of W is 4.33 ounces.
Answer: dr/dt = 9/(24pi) cm per minute
9/(24pi) is approximately equal to 0.119366
=============================================
Work Shown:
Given info
dS/dt = 18 cm^2/min is the rate of change of the surface area
r = 6 cm is the radius, from the fact that the diameter is 12 cm
--------
Use the surface area equation given, apply the derivative, plug in the given values and then isolate dr/dt which represents the rate of change for the radius
S = 4*pi*r^2
dS/dt = 2*4*pi*r*dr/dt
dS/dt = 8*pi*r*dr/dt
18 = 8*pi*6*dr/dt
18 = 48*pi*dr/dt
48pi*dr/dt = 18
dr/dt = 18/(48pi)
dr/dt = (9*2)/(24*2pi)
dr/dt = 9/(24pi)
The units are cm per minute, which can be written as cm/min.