A(c - b) = d
ac - ab = d
ac = d + ab
c = (d + ab)/a
The negative infinity for the x coordinate states that the graph should move to the bottom and the y coordinate is positive infinity so that the graph goes up
the first graph is your answer
Answer:
ok lol
Step-by-step explanation:
Answer:
a = (p - 3b)/10
Step-by-step explanation:
Isolate the variable, a. Note the equal sign, what you do to one side, you do to the other. Do the opposite of PEMDAS (Parenthesis, Exponents (& roots), Multiplication, Division, Addition, Subtraction).
p = 10a + 3b
First, subtract 3b from both sides.
p (-3b) = 10a + 3b (-3b)
p - 3b = 10a
Next, isolate the a. Divide 10 from both sides.
(p - 3b)/10 = (10a)/10
(p - 3b)/10 = a
a = (p - 3b)/10 is your answer.
~
Answer:
- perimter of original rectangle = <u>17. 6 mm</u>
- side length of the enlarged rectangle = <u>23. 22 mm</u>
- perimeter of the enlarged rectangle = <u>95. 04 mm</u>
Step-by-step explanation:
<u>PERIMETER</u><u> </u><u>OF</u><u> </u><u>ORIGINAL</u><u> </u><u>RECTANGLE</u>
- Length of original rectangle = 4.5 mm
- Width of original rectangle = 4.3 mm
<em>perimeter = 2 × ( length + width)</em>
= 2 × ( 4.5 + 4.3)
= 2 × 8.8
= 17. 6 mm
<u>SIDE</u><u> </u><u>LENGTH</u><u> </u><u>OF</u><u> </u><u>ENLARGED</u><u> </u><u>RECTANGLE</u>
- Width of original rectangle = 4. 5 mm
- Width of enlarged rectangle = 24.3 mm
Enlargement factor = 24.3 / 4.5
= 5.4
- Length of original rectangle = 4.5 mm
- Enlargement factor = 5.4
Side length of enlarged rectangle
= original length × Enlargement factor
= 4.3 × 5.4
= 23. 22 mm
<u>PERIMTER OF ENLARGED RECTANGLE</u>
= 2 × ( enlarged ength + enlarged breadth)
= 2 × (23. 22 + 24. 3 )
= 95. 04 mm