Answer:

We can find the second moment given by:

And we can calculate the variance with this formula:
![Var(X) =E(X^2) -[E(X)]^2 = 7.496 -(2.5)^2 = 1.246](https://tex.z-dn.net/?f=%20Var%28X%29%20%3DE%28X%5E2%29%20-%5BE%28X%29%5D%5E2%20%3D%207.496%20-%282.5%29%5E2%20%3D%201.246)
And the deviation is:

Step-by-step explanation:
For this case we have the following probability distribution given:
X 0 1 2 3 4 5
P(X) 0.031 0.156 0.313 0.313 0.156 0.031
The expected value of a random variable X is the n-th moment about zero of a probability density function f(x) if X is continuous, or the weighted average for a discrete probability distribution, if X is discrete.
The variance of a random variable X represent the spread of the possible values of the variable. The variance of X is written as Var(X).
We can verify that:

And 
So then we have a probability distribution
We can calculate the expected value with the following formula:

We can find the second moment given by:

And we can calculate the variance with this formula:
![Var(X) =E(X^2) -[E(X)]^2 = 7.496 -(2.5)^2 = 1.246](https://tex.z-dn.net/?f=%20Var%28X%29%20%3DE%28X%5E2%29%20-%5BE%28X%29%5D%5E2%20%3D%207.496%20-%282.5%29%5E2%20%3D%201.246)
And the deviation is:

Answer:
(-65)/17
Step-by-step explanation:
Evaluate 3/(x - 2) - sqrt(x - 3) where x = 19:
3/(x - 2) - sqrt(x - 3) = 3/(19 - 2) - sqrt(19 - 3)
19 - 3 = 16:
3/(19 - 2) - sqrt(16)
19 - 2 = 17:
3/17 - sqrt(16)
sqrt(16) = sqrt(2^4) = 2^2:
3/17 - 2^2
2^2 = 4:
3/17 - 4
Put 3/17 - 4 over the common denominator 17. 3/17 - 4 = 3/17 + (17 (-4))/17:
3/17 - (4×17)/17
17 (-4) = -68:
3/17 + (-68)/17
3/17 - 68/17 = (3 - 68)/17:
(3 - 68)/17
3 - 68 = -65:
Answer: (-65)/17
Solve for a by simplifying both sides of the equation, then isolating the variable.
a = 1
Answer:
-7.07106
Step-by-step explanation:
Answer:
x = 39.1
Step-by-step explanation:
mean = average off all the numbers =
sum of the numbers / amount of numbers.
35 = sum of the #'s / # of #'s
35 = 100.9 + x / 4
35 × 4 = 100.9 + x / 4 × 4
140 = 100.9 + x
140 – 100.9 = 100.9 + x – 100.9
39.1 = x
x = 39.1