Answer:
c. break the N2 triple bond.
Explanation:
In the general nitrogen reduction reaction (which occurs in the nitrogenase complex), ferredoxin acts as an electron donor to Fe-protein, which in turn hydrolyzes ATP and reduces MoFe-protein. By reducing MoFe-protein one can then reduce numerous (triple bonded) substrates although, under natural conditions, it reacts only to N2 and H +.
That is, ATP must be present in the reaction so that MoFe-protein can break the triple bond N2.
The binding and hydrolysis of ATP to Fe-protein causes a change in conformation of this protein which facilitates redox reactions. The enzymatic reduction of N2 by nitrogenase requires a large energy investment, although the exact changes in free energy are still unknown.
Answer:
Gene therapy is a medical field which focuses on the utilization of the therapeutic delivery of nucleic acids into a patient's cells as a drug to treat disease.
MRNA can leave the nucleus while DNA can not
In mammals urine is expelled through the urethra which is part of the excretory system in unicellular organisms waste products are discharged directly through the surface of the cell
Answer:
A source from which organisms generally take elements is called exchange pool (option B).
Explanation:
Options for this question are:
- <em>Food web.</em>
- <em>Exchange pool.</em>
- <em>Reservoir.</em>
- <em>Biotic community.</em>
The term exchange pool is related to the biogeochemical cycles that exist in nature, referring to the source from which elements present in the environment become part of living organisms.
<u>Exchange pools are the biotic components</u> -like animals and plants- of an ecosystem, which determine the passage of elements between living beings. An element can remain as a reservoir (abiotic) in the soil, and then be incorporated into the exchange pool.