Answer:
Step-by-step explanation:
![x\le -4\\ \\ g(-4)=\sqrt[3]{-4+5}\\ \\ g(-4)=\sqrt[3]{1}=1](https://tex.z-dn.net/?f=x%5Cle%20-4%5C%5C%20%5C%5C%20g%28-4%29%3D%5Csqrt%5B3%5D%7B-4%2B5%7D%5C%5C%20%5C%5C%20g%28-4%29%3D%5Csqrt%5B3%5D%7B1%7D%3D1)
Answer: Y= 2/3x + 9
Explanation: The equation is in slope-intercept form, y=mx+b. Since it is parallel to the equation, it has the same slope (2/3x) and since b is the x intercept, b is 9.
Add 4.5<span> and </span>9.2<span> to get </span><span>13.7.
</span>13.7
13.7 in. is the length
Answer:
1/72
Step-by-step explanation:
2^-3 = 1/2^3 = 1/8
3^-2 = 1/3^2 = 1/9
1/8 x 1/9 = 1/72
Answer:
3
+ 11a³ - 7a² + 18a - 18
Step-by-step explanation:
<u>When multiplying with two brackets, you need to multiply the three terms, (a²), (4a) and (-6) from the first bracket to all the terms in the second brackets, (3a²), (-a) and (3) individually. I have put each multiplied term in a bracket so it is easier.</u>
(a² + 4a - 6) × (3a² - a + 3) =
(a² × <em>3a²</em>) + {a² × <em>(-a)</em>} + (a² × <em>3</em>) + (4a × <em>3a²</em>) + {4a × <em>(-a)</em>} + (4a × <em>3</em>) + {(-6) × <em>a²</em>) + {(-6) × <em>(-a)</em>} + {(-6) × <em>3</em>}
<u>Now we can evaluate the terms in the brackets. </u>
(a² × 3a²) + {a² × (-a)} + (a² × 3) + (4a × 3a²) + {4a × (-a)} + (4a × 3) + {(-6) × a²) + {(-6) × (-a)} + {(-6) × 3} =
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18)
<u>We can open the brackets now. One plus and one minus makes a minus. </u>
3
+ (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18) =
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18
<u>Evaluate like terms.</u>
3
-a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18 = 3
+ 11a³ - 7a² + 18a - 18