Answer:
y=(5/2)x+(-11/2)
Problem: What is the slope-intercept form for a line going through (3,2) and is parallel to y=(5/2)x-5?
Step-by-step explanation:
Parallel lines have the same slope.
The slope-intercept form of a line is y=mx+b where m is the slope and b is the y-intercept. So we see that m=5/2 since that is the slope of y=5/2 x-5.
y=(5/2)x+b
We know (x,y)=(3,2) is a point on the line so replacing x with 3 and y with 2 gives:
2=(5/2)(3)+b
2=(15/2)+b
Subtract 15/2 on both sides:
2-(15/2)=b
Simplify:
(4-15)/2=b
(-11/2)=b
So the equation is:
y=(5/2)x+(-11/2)
Starting with:

First, the difference of 2 squares shows that

Sub that in and multiply both sides by

:

This easily simplifies to

See if you can continue from here. If not, leave a comment and I or someone else can show you the rest.
Answer:
y = 6
Step-by-step explanation:
Given
6y - 2 = 34 ( add 2 to both sides )
6y = 36 ( divide both sides by 6 )
y = 6
No, for thing 2x and 3x have different slopes. moreover they have different y and x intercepts. you can set them equal to find an intersection since they don't have the same slope but yea