First, tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>), so if cos(<em>θ</em>) = 3/5 > 0 and tan(<em>θ</em>) < 0, then it follows that sin(<em>θ</em>) < 0.
Recall the Pythagorean identity:
sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1
Then
sin(<em>θ</em>) = -√(1 - cos²(<em>θ</em>)) = -4/5
and so
tan(<em>θ</em>) = (-4/5) / (3/5) = -4/3
The remaining trig ratios are just reciprocals of the ones found already:
sec(<em>θ</em>) = 1/cos(<em>θ</em>) = 5/3
csc(<em>θ</em>) = 1/sin(<em>θ</em>) = -5/4
cot(<em>θ</em>) = 1/tan(<em>θ</em>) = -3/4
y = 19
x = 4(19) + 21(19) = 76 + 399 = 475
3(475) × 7
1425 × 7
9975 <--- answer.
Hope this helped!
Nate
Answer:
21
Step-by-step explanation:
Hope this helped have an amazing day!
Set up and solve an equation:
3(90-x) = (180-x). Then 270 - 3x = 180 - x, or 270 - 180 = 2x.
90 = 2x, so x = 45 deg.
Is this true? 3(90-45) = (180-45)? If so, x = 45 degrees is correct.