First we define the variable to be used:
x: half-life time period
The equation for this problem can be modeled as:
y = A * (b) ^ x
Where,
A: initial amount
b: decrease rate.
For example:
if there are 100 atoms, after one half-life time period, 50 atoms remain:
y = 100 * (0.50) ^ x
after one half-life time period (x = 1):
y = 100 * (0.50) ^ 1
y = 50
The equation that models the problem is:
y = 16 * (0.50) ^ x
The table is:
1 8
2 4
3 2
4 1
5 0.5
Sabiendo que 1dl equivale a 100 militros.
Entonces:
Respuesta: Se pueden llenar en total 35.000 latas.
Espero que te sirva, salu2!!!!
Standard form is an²+bn+c
expand
distribute
2n(3-n)+5=
2n(3)+2n(-n)+5=
6n-2n²+5=
-2n²+6n+5
g(n)=-2n²+6n+5 is standard form
Answer:
1/3
Step-by-step explanation:
Assuming that both die are labelled 1 - 6, the successful outcomes are 3 and 5 or 3 and 6. This is 2 out of the 6 possible outcomes so the answer is 2/6 or 1/3.
1) 48% of 8=3.84
2) 3% of 119=3.57
3) 26% of 32=8.32
4) <span>76% of 280=212.8
Hope this helps ya!</span>