Answer:
1. Glycolysis
- Option- A, C
2. Electron transport chain
-Option-D, E
3.Citric acid (Krebs) cycle- Option-B
Explanation:
1.Glycolysis
Glycolysis is the first phase of the cellular respiration which oxidizes the glucose molecule to pyruvate molecules in ten enzymes catalyzed reaction. The reaction takes place in the cytosol of the cell.
2. Electron transport chain
The last phase of the cellular respiration where the electrons flow or transports through the electron carriers and in last is picked or accepted by the oxygen. The process forms about 24 molecules of ATP through ATP synthesis.
3. Citric acid (Krebs) cycle
The third phase of respiration which forms the reducing equivalents like NADH and FADH₂. The process produces 4 molecules of Carbon dioxide.
Platelets (prevent blood loss) and white blood cells (fight infection)
The things that happened to the movement of molecules at the equilibrium is : the movement of molecules continues.
But during this time, it got no concentration gradient so there will be no net movement in any particular reason
hope this helps
Answer:
Encontré esto en un texto de microbiología, tal vez sea útil.
Explanation:
"Las cianobacterias y los cloroplastos de las plantas tienen ambos fotosistemas, mientras que las bacterias fotosintéticas anoxigénicas sólo utilizan uno de los fotosistemas. Ambos fotosistemas son excitados simultáneamente por la energía luminosa. Si la célula requiere tanto ATP como NADPH para la biosíntesis, entonces llevará a cabo una fotofosforilación no cíclica".
Si estoy equivocado, pido disculpas. También lo he sacado de un traductor así que si suena mal también me disculpo por ello.
Answer:
32 possible combination of chromosome
Explanation:
According to the law of independent assortment as proposed by Mendel, alleles of a gene will separate into gamete independently of the alleles of another gene. Since this organism contains 10 chromosomes in its somatic cell, it will undergo meiosis to produce half number of chromosomes in its gametes i.e. 5 chromosomes.
If we know the haploid number of chromosomes of an organism i.e. n, we can calculate the possible combination of chromosomes that will be present in its gametes as a result of independent assortment during meiosis using the formula:
2^n, where n= haploid no. of chromosome
If n is 5 chromosome in this case, the possible combination of chromosome in its gametes will be 2^5 = 32. Hence, as a result of independent assortment, an organism with 10 chromosome in its somatic cell will produce 32 possible combinations of chromosome in its gametes.