It is 6/9. 3 times 3 equals 9, so u have to multiply 2 times 3 and u get six.
2/3=6/9
Answer:
x ≤ 15
Step-by-step explanation:
25x + 225 ≤ 600
Subtract 225 from both sides and get
25x ≤ 375
Divide 25 from both sides and you´ll get
x ≤ 15
Answer:
The vertex is the point (-6,-34)
Step-by-step explanation:
we know that
The equation of a vertical parabola into vertex form is equal to

where
(h,k) is the vertex of the parabola
In this problem we have

Convert in vertex form
Group terms that contain the same variable, and move the constant to the opposite side of the equation

Complete the square . Remember to balance the equation by adding the same constants to each side.


Rewrite as perfect squares


The vertex is the point (-6,-34)
These are two questions and two answers.
Question 1) Which of the following polar equations is equivalent to the parametric equations below?
<span>
x=t²
y=2t</span>
Answer: option <span>A.) r = 4cot(theta)csc(theta)
</span>
Explanation:
1) Polar coordinates ⇒ x = r cosθ and y = r sinθ
2) replace x and y in the parametric equations:
r cosθ = t²
r sinθ = 2t
3) work r sinθ = 2t
r sinθ/2 = t
(r sinθ / 2)² = t²
4) equal both expressions for t²
r cos θ = (r sin θ / 2 )²
5) simplify
r cos θ = r² (sin θ)² / 4
4 = r (sinθ)² / cos θ
r = 4 cosθ / (sinθ)²
r = 4 cot θ csc θ ↔ which is the option A.
Question 2) Which polar equation is equivalent to the parametric equations below?
<span>
x=sin(theta)cos(theta)+cos(theta)
y=sin^2(theta)+sin(theta)</span>
Answer: option B) r = sinθ + 1
Explanation:
1) Polar coordinates ⇒ x = r cosθ, and y = r sinθ
2) replace x and y in the parametric equations:
a) r cosθ = sin(θ)cos(θ)+cos(θ)
<span>
b) r sinθ =sin²(θ)+sin(θ)</span>
3) work both equations
a) r cosθ = sin(θ)cos(θ)+cos(θ) ⇒ r cosθ = cosθ [ sin θ + 1] ⇒ r = sinθ + 1
<span>
b) r sinθ =sin²(θ)+sin(θ) ⇒ r sinθ = sinθ [sinθ + 1] ⇒ r = sinθ + 1
</span><span>
</span><span>
</span>Therefore, the answer is r = sinθ + 1 which is the option B.
Answer:
the right answer would be 13