Answer:
F. Both regulation and secretion
Explanation:
Through sweat glands and superficial blood vessels, the skin is able to cool the body and regulate its internal temperature.
The eccrine sweat gland, which is controlled by the sympathetic nervous system, regulates body temperature. When internal temperature rises, the eccrine glands secrete water to the skin surface, where heat is removed by evaporation.
Answer:
Point 3 for kinetic, points 1 and 5 for potential
Explanation:
There is one point that the ball has the most kinetic energy it is at point 3. Point 3 has the most kinetic energy because it has gained the most speed since it was dropped and it also is right before it starts slowing down from trying to go up again. Points 1 and 5 have the most potential energy. When the ball is at point 1 or 5 it is at its maximum height thus it cannot swing any further, so it stops for a split second and gains a large amount of potential energy before it is released into kinetic energy when it falls back down.
Answer:
Answer C
Explanation:
has the same genetic information and ecological niche.
Answer:
Explanation:
Carbon monoxide (CO) is a colourless, non-irritant, odourless and tasteless toxic gas. It is produced by the incomplete combustion of carbonaceous fuels such as wood, petrol, coal, natural gas and kerosene. Its molecular weight is 28.01 g/mol, melting point −205.1 °C, boiling point (at 760 mmHg) −191.5 °C (−312.7 °F), density 1.250 kg/m3 at 0 °C and 1 atm and 1.145 kg/m3 at 25 °C and 1 atm, and relative density (air = 1) 0.967 (1,2). Its solubility in water at 1 atm is 3.54 ml/100 ml at 0 °C, 2.14 ml/100 ml at 25 °C and 1.83 ml/100 ml at 37 °C.
The molecular weight of carbon monoxide is similar to that of air (28.01 vs approximately 29). It mixes freely with air in any proportion and moves with air via bulk transport. It is combustible, may serve as a fuel source and can form explosive mixtures with air. It reacts vigorously with oxygen, acetylene, chlorine, fluorine and nitrous oxide. Carbon monoxide is not detectable by humans either by sight, taste or smell. It is only slightly soluble in water, blood serum and plasma; in the human body, it reacts with haemoglobin to form carboxyhemoglobin (COHb).
The relationship of carbon monoxide exposure and the COHb concentration in blood can be modelled using the differential Coburn-Forster-Kane equation (3), which provides a good approximation to the COHb level at a steady level of inhaled exogenous carbon monoxide.
Conversion factors
At 760 mmHg and 20 °C, 1ppm = 1.165 mg/m3 and 1 mg/m3 = 0.858 ppm; at 25 °C, 1 ppm = 1.145 mg/m3 and 1 mg/m3 = 0.873 ppm.
Fat membrane metabolic disorder facts hamster cells were marked with a blue dye and membrane proteins