Correct - wrong percentage
-------------------- = ---------------
wrong 100
68 - 60 x
--------- = ----
60 100
8 x
---- = ----
<span>60 100
</span>800 60x
----- = ----
60 60
13.3% = x
The region is in the first quadrant, and the axis are continuous lines, then x>=0 and y>=0
The region from x=0 to x=1 is below a dashed line that goes through the points:
P1=(0,2)=(x1,y1)→x1=0, y1=2
P2=(1,3)=(x2,y2)→x2=1, y2=3
We can find the equation of this line using the point-slope equation:
y-y1=m(x-x1)
m=(y2-y1)/(x2-x1)
m=(3-2)/(1-0)
m=1/1
m=1
y-2=1(x-0)
y-2=1(x)
y-2=x
y-2+2=x+2
y=x+2
The region is below this line, and the line is dashed, then the region from x=0 to x=1 is:
y<x+2 (Options A or B)
The region from x=2 to x=4 is below the line that goes through the points:
P2=(1,3)=(x2,y2)→x2=1, y2=3
P3=(4,0)=(x3,y3)→x3=4, y3=0
We can find the equation of this line using the point-slope equation:
y-y3=m(x-x3)
m=(y3-y2)/(x3-x2)
m=(0-3)/(4-1)
m=(-3)/3
m=-1
y-0=-1(x-4)
y=-x+4
The region is below this line, and the line is continuos, then the region from x=1 to x=4 is:
y<=-x+2 (Option B)
Answer: The system of inequalities would produce the region indicated on the graph is Option B
Answer:
40 miles
Step-by-step explanation:
In the attached diagram, Point A is the starting point and C is the end point. We want to determine the distance from A to C.
The path driven forms a right triangle in which AC is the hypotenuse.
We therefore use the<u> Pythagorean Theorem</u> to solve for the AC.
Pythagorean Theorem: 

The straight line distance from the starting point is 40 miles.
Let the number of raspberry bushes in one garden = x
And the number of raspberry bushes in second garden = y
Garden one has 5 times as many raspberry bushes as second garden,
So the equation will be,
x = 5y -------(1)
If 22 bushes were transplanted from garden one to the second, number of bushes in both the garden becomes same,
Therefore, (x - 22) = (y + 22)
x - y = 22 + 22
x - y = 44 ------(2)
Substitute the value of x from equation (1) to equation (2)
5y - y = 44
4y = 44
y = 11
Substitute the value of 'y' in equation (1),
x = 5(11)
x = 55
Therefore, Number of bushes in garden one were 55 and in second garden 11 originally.
Learn more,
brainly.com/question/12422372
You are looking for the perimeter, so you need to add 11+11+7+7. That equals 36.