
Step-by-step explanation:
<h2><em>Factor the </em><em>expression</em></h2>
<em> </em>
</em>
<h2><em>Separate into possible cases</em></h2>
<em> </em>
</em>
<h2><em>Solve the equation</em></h2>
<em>![n = 0[tex]n = 0 \:  \:  \:  \:  \:  \:  \:  \: [tex]n = 0 \:  \:  \:  \:  \:  \:  \:  \: 2n ^ 2 - 3n + 2 = 0](https://tex.z-dn.net/?f=n%20%3D%200%3C%2Fem%3E%3C%2Fp%3E%3Cp%3E%3Cem%3E%5Btex%5Dn%20%3D%200%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%3C%2Fem%3E%3C%2Fp%3E%3Cp%3E%3Cem%3E%5Btex%5Dn%20%3D%200%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%202n%20%5E%202%20-%203n%20%2B%202%20%3D%200) </em>
</em>
<h2><em>Find the union</em></h2>
<em>![n = 0[tex]n = 0 \:  \:  \:  \:  \:  \: [tex]n = 0 \:  \:  \:  \:  \:  \: n =  R](https://tex.z-dn.net/?f=n%20%3D%200%3C%2Fem%3E%3C%2Fp%3E%3Cp%3E%3Cem%3E%5Btex%5Dn%20%3D%200%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%3C%2Fem%3E%3C%2Fp%3E%3Cp%3E%3Cem%3E%5Btex%5Dn%20%3D%200%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20n%20%3D%20%20R) </em>
</em>
<h2><em>there </em><em>for </em></h2>
<em> </em>
</em>
<em>hope </em><em>it</em><em> help</em>
<em>#</em><em>c</em><em>a</em><em>r</em><em>r</em><em>y</em><em> </em><em>on</em><em> learning</em>
 
        
             
        
        
        
Answer:
116 degrees
Step-by-step explanation:
180 - (26 + 90)
180 - 116 = 64 degrees
180 - 64 degrees = 116 degrees
Angle 1 = 116 degrees
Hope that helps!
 
        
                    
             
        
        
        
First, subtract to get the difference.
2.85 – 2.78 = 0.07
Next, divide 2.78 by 100
2.78 ÷ 100 = 0.0278
So, 0.0278 is 1%. Divide 0.07 by 0.0278 to get the answer.
0.07 ÷ 0.0278 ≈ 2.518
2.518 ≈2.5
Therefore, the percentage increase is approximately 2.5% (that's the answer).
Hope this helps!
        
             
        
        
        
The answer is 120. Because inscribed angle is Half of the arc measure. Double 60 and we get 120.
        
                    
             
        
        
        
A. 70°
Supplementary angles always = 180°
Where 180 - 110 = 70
110+ 70 = 180