1 + 3 = 4;
9 x 4 = 36;
60 - 36 = 24;
2 x 24 = 48;
14 + 48 = 62;
-6 + 62 = 56.
Answer:
The interval that represents the middle 68% of her commute times is between 33.5 and 42.5 minutes.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 38 minutes, standard deviation of 4.5 minutes.
Determine the interval that represents the middle 68% of her commute times.
Within 1 standard deviation of the mean. So
38 - 4.5 = 33.5 minutes
38 + 4.5 = 42.5 minutes.
The interval that represents the middle 68% of her commute times is between 33.5 and 42.5 minutes.
Answer:
see explanation
Step-by-step explanation:
Given
2x² + x - 1 = 2 ( subtract 2 from both sides )
2x² + x - 3 = 0
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term
product = 2 × - 3 = - 6 and sum = + 1
The factors are - 2 and + 3
Use these factors to split the x- term
2x² - 2x + 3x - 3 = 0 ( factor the first/second and third/fourth terms )
2x(x - 1) + 3(x - 1) = 0 ← factor out (x - 1) from each term
(x - 1)(2x + 3) = 0
Equate each factor to zero and solve for x
x - 1 = 0 ⇒ x = 1
2x + 3 = 0 ⇒ 2x = - 3 ⇒ x = - 
Answer:
the domain is the legal values of x, while the range is all the legale values of y
Step-by-step explanation:
Answer and step-by-step explanation:
I believe it is 287. I am not entirely sure, but I believe that is the answer.