1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AysviL [449]
3 years ago
8

15 ) 2,145 please help I cant understand it​

Mathematics
1 answer:
Alika [10]3 years ago
8 0
Sorry but there are no photos or anything, please post a photo or something so I can answer your question!
You might be interested in
A ball is thrown into the air. The height in feet of the ball can be modeled by the equation h = -16t2 + 20t + 6 where t is the
makkiz [27]

f(t)=h=-16t^2+20t+6



a=-16, b=20, c =6

Δ=b^2-4ac=20^2-4*(-16)*6=400+384=784

\sqrt{Δ}=\sqrt{784}=28

max:

p=-\frac{b}{2a}=-\frac{20}{-32}=\frac{20}{32}=\frac{5}{8}

max heigh: h=-16(\frac{5}{8})^2+20*\frac{5}{8}+6=-16\frac{25}{64}+\frac{100}{8}+6

h=-\frac{25}{4}+\frac{50}{4}+6=\frac{-25+50+24}{4}=\frac{49}{4}

h=\frac{49}{4} at t=\frac{5}{8}s


will fall down at t:

t=\frac{-20-28}{-32}=\frac{-48}{-32}=\frac{3}{2}=1.5

t=1.5s

8 0
2 years ago
A research firm tests the miles-per-gallon characteristics of three brands of gasoline. Because of different gasoline performanc
Anni [7]

Answer:

A.) At α = 0.05, is there a significant difference in the mean miles-per-gallon characteristics of the three brands of gasoline.

B.)<u><em>The advantage of attempting to remove the block effect is</em></u>

The completely randomized designs does not prove that H0 is incorrect only that it cannot be rejected.

Step-by-step explanation:

<em><u /></em>

<em><u>Using Two-way ANOVA method</u></em>

Given problem

<em><u>Observation              I          II       III          Row total (xr)</u></em>

A                              18 21 20            59

B                            24 26 27             77

C                            30 29 34             93

D                            22 25 24            71

<u>E                            20 23 24           63                      </u>

Col total (xc)             114 124 129        367

∑x²=9233→(A)

∑x²c/r

=1/5(114²+124²+129²)

=1/5(12996+15376+16641)

=1/5(45013)

=9002.6→(B)

∑x²r/c

=1/3(59²+77²+93²+71²+67²)

=1/3(3481+5929+8649+5041+4489)

=1/3(27589)

=9196.3333→(C)

(∑x)²/n

=(367)²/15

=134689/15

=8979.2667→(D)

Sum of squares total

SST=∑x²-(∑x)²/n

=(A)-(D)

=9233-8979.2667

=253.7333

Sum of squares between rows

SSR=∑x²r/c-(∑x)²/n

=(C)-(D)

=9196.3333-8979.2667

=217.0667

Sum of squares between columns

SSC=∑x²c/r-(∑x)²/n

=(B)-(D)

=9002.6-8979.2667

=23.3333

Sum of squares Error (residual)

SSE=SST-SSR-SSC

=253.7333-217.0667-23.3333

=13.3333

<u>ANOVA table</u>

Source                 Sums         Degrees      Mean Squares

of Variation       of Squares   of freedom

<u>                               SS                 DF              MS       F p-value</u>

B/ w     SSR=217.0667              4 MSR=54.2667    32.56 0.0001

rows

B/w     SSC=23.3333         c-1=2 MSC=11.6667        7 0.01

columns

<u>Error (residual)SSE=13.3333 (r-1)(c-1)=8 MSE=1.6667                  </u>

<u>Total SST=253.7333 rc-1=14                                                        </u>

Conclusion:

<u> 1. F for between Rows</u>

The critical region for F(4,8) at 0.05 level of significance=3.8379

The calculated F for Rows=32.56>3.8379

Therefore H0 is rejected

<u>2. F for between Columns</u>

The critical region for F(2,8) at 0.05 level of significance=4.459

We see that the calculated F for Colums=7>4.459

therefore H0 is rejected,and concluded that there is significant differentiating between columns

<u><em>Part B:</em></u>

To analyze the data for completely  randomized designs click on anova two factor without replication  in the data analysis dialog box of the excel spreadsheet.

The following table is obtained

Source DF             Sum                  Mean           F Statistic

<u>                 (df1,df2)    of Square (SS) Square (MS)                    P-value</u>

Factor A       1 1496.5444 1496.5444 769.6514          0.001297

Rows

Factor B -     2 19.4444           9.7222               5                  0.1667

Columns

Interaction

AB               2    3.8889   1.9444        0.1013         0.9045

<u> Error     12   230.4            19.2                                           </u>

<u>Total 17 1750.2778 102.9575                                                         </u>

<u />

<u>Factor - A- Rows</u>

Since p-value < α, H0 is rejected.

<u>Factor - B- Columns</u>

Since p-value > α, H0 can not be rejected.

The averages of all groups assume to be equal.

<u>Interaction AB</u>

Since p-value > α, H0 can not be rejected.

<u><em>The advantage of attempting to remove the block effect is</em></u>

The completely randomized designs does not prove that H0 is incorrect only that it cannot be rejected.

3 0
2 years ago
The point-slope form of the equation of the line that passes through (–9, –2) and (1, 3) is y – 3 = (x – 1). What is the slope-i
joja [24]
Y + 3 = x - 1
    - 3    - 3
      y = x - 4

The slope-intercept form of the equation of the line is y = x - 4.
8 0
3 years ago
Let f(x)=5x3−60x+5 input the interval(s) on which f is increasing. (-inf,-2)u(2,inf) input the interval(s) on which f is decreas
o-na [289]
Answers:

(a) f is increasing at (-\infty,-2) \cup (2,\infty).

(b) f is decreasing at (-2,2).

(c) f is concave up at (2, \infty)

(d) f is concave down at (-\infty, 2)

Explanations:

(a) f is increasing when the derivative is positive. So, we find values of x such that the derivative is positive. Note that

f'(x) = 15x^2 - 60&#10;

So,

&#10;f'(x) \ \textgreater \  0&#10;\\&#10;\\ \Leftrightarrow 15x^2 - 60 \ \textgreater \  0&#10;\\&#10;\\ \Leftrightarrow 15(x - 2)(x + 2) \ \textgreater \  0&#10;\\&#10;\\ \Leftrightarrow \boxed{(x - 2)(x + 2) \ \textgreater \  0} \text{   (1)}

The zeroes of (x - 2)(x + 2) are 2 and -2. So we can obtain sign of (x - 2)(x + 2) by considering the following possible values of x:

-->> x < -2
-->> -2 < x < 2
--->> x > 2

If x < -2, then (x - 2) and (x + 2) are both negative. Thus, (x - 2)(x + 2) > 0.

If -2 < x < 2, then x + 2 is positive but x - 2 is negative. So, (x - 2)(x + 2) < 0.
 If x > 2, then (x - 2) and (x + 2) are both positive. Thus, (x - 2)(x + 2) > 0.

So, (x - 2)(x + 2) is positive when x < -2 or x > 2. Since

f'(x) \ \textgreater \  0 \Leftrightarrow (x - 2)(x + 2)  \ \textgreater \  0

Thus, f'(x) > 0 only when x < -2 or x > 2. Hence f is increasing at (-\infty,-2) \cup (2,\infty).

(b) f is decreasing only when the derivative of f is negative. Since

f'(x) = 15x^2 - 60

Using the similar computation in (a), 

f'(x) \ \textless \  \ 0 \\ \\ \Leftrightarrow 15x^2 - 60 \ \textless \  0 \\ \\ \Leftrightarrow 15(x - 2)(x + 2) \ \ \textless \  0 \\ \\ \Leftrightarrow \boxed{(x - 2)(x + 2) \ \textless \  0} \text{ (2)}

Based on the computation in (a), (x - 2)(x + 2) < 0 only when -2 < x < 2.

Thus, f'(x) < 0 if and only if -2 < x < 2. Hence f is decreasing at (-2, 2)

(c) f is concave up if and only if the second derivative of f is positive. Note that

f''(x) = 30x - 60

Since,

f''(x) \ \textgreater \  0&#10;\\&#10;\\ \Leftrightarrow 30x - 60 \ \textgreater \  0&#10;\\&#10;\\ \Leftrightarrow 30(x - 2) \ \textgreater \  0&#10;\\&#10;\\ \Leftrightarrow x - 2 \ \textgreater \  0&#10;\\&#10;\\ \Leftrightarrow \boxed{x \ \textgreater \  2}

Therefore, f is concave up at (2, \infty).

(d) Note that f is concave down if and only if the second derivative of f is negative. Since,

f''(x) = 30x - 60

Using the similar computation in (c), 

f''(x) \ \textless \  0 &#10;\\ \\ \Leftrightarrow 30x - 60 \ \textless \  0 &#10;\\ \\ \Leftrightarrow 30(x - 2) \ \textless \  0 &#10;\\ \\ \Leftrightarrow x - 2 \ \textless \  0 &#10;\\ \\ \Leftrightarrow \boxed{x \ \textless \  2}

Therefore, f is concave down at (-\infty, 2).
3 0
3 years ago
9.) A new basketball is $10.95 and is 20% off. The sales tax is 7%.
blagie [28]

If you are trying to find the cost of the basket ball, it is $8.15.

Step 1: Find 20% of 10.95- which is 2.19- and subtract 2.19 from 10.95-which is 8.76.

Step 2: Find 7% of 8.76-which is 0.6132- and subtract 0.6132 from 8.76-which is 8.1468

Step 3: Round to the nearest hundredth, which gives you 8.15.

Thus, $8.15 is your answer.

4 0
3 years ago
Read 2 more answers
Other questions:
  • Verify the identity. Justify each step.
    6·1 answer
  • Find the area of this pentagon
    7·1 answer
  • The aorta is the largest artery in the human body. In the average adult, the aorta attains a maximum diameter of about 1.18 inch
    8·1 answer
  • Answer below PLEASE HELP ME PLSSS HELP WILL MARK BRAINLIST
    8·2 answers
  • 2 3/5 divided by 7/9?As a Multiplication fraction
    14·1 answer
  • Which of the following statements is true only if triangles EFI and GFH are similar?
    14·2 answers
  • Which expression has both eight and N factors
    14·1 answer
  • Triangle X Y Z has centroid S. Lines are drawn from each point through the centroid to the midpoint of the opposite side to form
    13·2 answers
  • PLease help! Thanks!
    13·1 answer
  • Pls, can someone help me with this problem?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!