Since the area of the circle is only 3.14. that means 3.14 out of one hundred units can be hit. so you have a 3.14% chance of hitting the circle in the middle. SO the probability is very close to 0.
100 - 3.14 = 96.86, so we have a 97 percent chance (approximately) of landing in the white space, This is very close to one.
Answer:
cos(θ) = 3/5
Step-by-step explanation:
We can think of this situation as a triangle rectangle (you can see it in the image below).
Here, we have a triangle rectangle with an angle θ, such that the adjacent cathetus to θ is 3 units long, and the cathetus opposite to θ is 4 units long.
Here we want to find cos(θ).
You should remember:
cos(θ) = (adjacent cathetus)/(hypotenuse)
We already know that the adjacent cathetus is equal to 3.
And for the hypotenuse, we can use the Pythagorean's theorem, which says that the sum of the squares of the cathetus is equal to the square of the hypotenuse, this is:
3^2 + 4^2 = H^2
We can solve this for H, to get:
H = √( 3^2 + 4^2) = √(9 + 16) = √25 = 5
The hypotenuse is 5 units long.
Then we have:
cos(θ) = (adjacent cathetus)/(hypotenuse)
cos(θ) = 3/5
Let a=price of adult ticket
let c=price of a child's ticket
start out by writing the following system of equations:
3a+4c=132
2a+3c=94
then, multiply the first equation by 2, and the second equation by 3 to get the following system of equations:
6a+8c=264
6a+9c=282
subtract the like terms to get the following equation:
-c=-18
divide both sides by -1 to get rid of the negative to get the price of a child's ticket to be $18. to find the price of an adult ticket, pick one of the original equations to substitute the 18 in for c to find a. for example:
2a+3c=94
2a+3(18)=94
2a+54=94
-54 -54
2a=40
2 2
a=20
or if you decide to use the other equation:
3a+4c=132
3a+4(18)=132
3a+72=132
-72 -72
3a=60
3 3
a=20
either way, you still get an adults ticket to be $20 and a child's ticket to be $18.
A. 32/4=8
B. Square root of 9 = 3
Answer:
5 days
(the exact number of days below)
Step-by-step explanation:
65/7=9.28571429
9.28571429 sec = 1 dollar
464285.715 seconds=50000 dollars
464285.715 seconds=5.373677256944 days