Answer:
The three numbers are 341, 342, and 343
Step-by-step explanation:
We start by assigning X to the first integer. Since they are consecutive, it means that the 2nd number will be X + 1 and the 3rd number will be X + 2 and they should all add up to 1026. Therefore, you can write the equation as follows:
(X) + (X + 1) + (X + 2) = 1026
To solve for X, you first add the integers together and the X variables together. Then you subtract three from each side, followed by dividing by 3 on each side. Here is the work to show our math:
X + X + 1 + X + 2 = 1026
3X + 3 = 1026
3X + 3 - 3 = 1026 - 3
3X = 1023
3X/3 = 1023/3
X = 341
Which means that the first number is 341, the second number is 341 + 1 and the third number is 341 + 2. Therefore, three consecutive integers that add up to 1026 are 341, 342, and 343.
341 + 342 + 343 = 1026
We know our answer is correct because 341 + 342 + 343 equals 1026 as displayed above.
3:15
Step by step explanation:
10:45
-7:30
———
3:15
This is a problem of maxima and minima using derivative.
In the figure shown below we have the representation of this problem, so we know that the base of this bin is square. We also know that there are four square rectangles sides. This bin is a cube, therefore the volume is:
V = length x width x height
That is:

We also know that the <span>bin is constructed from 48 square feet of sheet metal, s</span>o:
Surface area of the square base =

Surface area of the rectangular sides =

Therefore, the total area of the cube is:

Isolating the variable y in terms of x:

Substituting this value in V:

Getting the derivative and finding the maxima. This happens when the derivative is equal to zero:

Solving for x:

Solving for y:

Then, <span>the dimensions of the largest volume of such a bin is:
</span>
Length = 4 ftWidth = 4 ftHeight = 2 ftAnd its volume is:
Answer: Choice A
y = -3(x+2)^2 + 10
=================================================
Work Shown:
y = -3x^2-12x-2 is in the form y = ax^2+bx+c with
a = -3
b = -12
c = -2
The x coordinate of the vertex is
h = -b/(2a)
h = -(-12)/(2*(-3))
h = 12/(-6)
h = -2
We'll plug this into the original equation to find the corresponding y coordinate of the vertex.
y = -3x^2-12x-2
y = -3(-2)^2-12(-2)-2
y = 10
So k = 10 is the y coordinate of the vertex.
Overall, the vertex is (h,k) = (-2,10)
Meaning that we go from this general vertex form
y = a(x-h)^2 + k
to this
y = -3(x - (-2))^2 + 10
y = -3(x+2)^2 + 10