-(-8+5)+(-4+(-7+(-9-5)+3))
-(-8+5)+(-4+(-7+(-14)+3))
-(-8+5)+(-4+(-7-14+3))
-(-8+5)+(-4+(-18))
-(-8+5)+(-4-18)
-(-3)+(-22)
3+(-22)
3-22
19
Answer:
8 1/3+9 4/5+ 11 5/6+12+14 7/8=<u>58 61/120</u>
Step-by-step explanation:
First, you would add all of the whole numbers: 8+9+11+1+2+14=54
Second, you would add all of the fractions 1/3+4/5+5/6+7/8=4 61/120
Lastly, 54+4 61/120=<u>58 61/120</u>
Answer:
i don't now
Step-by-step explanation:
6 sec can take penny to strike the ground.
Solution:
Given data:
feet
feet
![h(t)=288+48t-16t^2](https://tex.z-dn.net/?f=h%28t%29%3D288%2B48t-16t%5E2)
Re-arrange the terms from greatest degree to smallest degree.
![h(t)=-16t^2+48t+288](https://tex.z-dn.net/?f=h%28t%29%3D-16t%5E2%2B48t%2B288)
We can solve it by applying quadratic formula,
![$x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=%24x%3D%5Cfrac%7B-b%5Cpm%20%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D)
Here a = –16, b = 48, c = 288
![$t=\frac{-48\pm \sqrt{48^2-4(-16)(288)}}{2(-16)}](https://tex.z-dn.net/?f=%24t%3D%5Cfrac%7B-48%5Cpm%20%5Csqrt%7B48%5E2-4%28-16%29%28288%29%7D%7D%7B2%28-16%29%7D)
![$t=\frac{-48\pm \sqrt{2304+18432}}{-32}](https://tex.z-dn.net/?f=%24t%3D%5Cfrac%7B-48%5Cpm%20%5Csqrt%7B2304%2B18432%7D%7D%7B-32%7D)
![$t=\frac{-48\pm \sqrt{20736}}{-32}](https://tex.z-dn.net/?f=%24t%3D%5Cfrac%7B-48%5Cpm%20%5Csqrt%7B20736%7D%7D%7B-32%7D)
![$t=\frac{-48\pm144}{-32}](https://tex.z-dn.net/?f=%24t%3D%5Cfrac%7B-48%5Cpm144%7D%7B-32%7D)
Now, write find two t's using plus and minus operation.
![$t=\frac{-48+144}{-32},\ \ t=\frac{-48-144}{-32}](https://tex.z-dn.net/?f=%24t%3D%5Cfrac%7B-48%2B144%7D%7B-32%7D%2C%5C%20%5C%20t%3D%5Cfrac%7B-48-144%7D%7B-32%7D)
![$t=\frac{96}{-32},\ \ t=\frac{-192}{-32}](https://tex.z-dn.net/?f=%24t%3D%5Cfrac%7B96%7D%7B-32%7D%2C%5C%20%5C%20t%3D%5Cfrac%7B-192%7D%7B-32%7D)
t = –3 (or) t = 6
We cannot write time is negative. so neglect t = –3.
Therefore t = 6.
Hence 6 sec can take penny to strike the ground.
This strategy works because if you subtract one number from another the sum of the two numbers should be the that is being subtracted from. (In this case, it's 200)