Answer:
In a rhombus, the diagonals bisect at right angles. That means half the diagonals form a right angle triangle then we can try the Pythagorean theorem. so -
one side of triangle = 6/2 =3 (half of the diagonal)
other side = 8/2 = 4
a^2 + b^2 = c2
3 ^2 + 4^2 = c^2
9+16 = c^2
c^2=25
c =
= 5
the hypothenus forms one side of the rhombus and here the hypothenus is 5, so the lenght of a side is 5 !
Answer:
--- 1 over 5 squared
Step-by-step explanation:
When multiplying terms with a common base, you just add the exponents:

That's true even when you don't have any exponents.


A negative exponent isn't fully simplified, so there's another rule to use:

That is '1 over x to the y' if it's too small to read.

Answer:
y= -a*x + 12
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>b</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>b</u>
Step-by-step explanation:
ax+by=12 (subtract "ax" from both sides so that the one on the left will become zero and we will have "by" )
by= -ax+12(divide both side by "by" so that we will have the equation as "y=mx+b")
finally the result will be:
y= -a*x + 12
b b
A polygon has the following coordinates: A(3,1), B(5,3), C(2,5), D(-1,5), E(-4,3), F(-2,1). Find the length of DC.
nlexa [21]
To find the length of a line given two points, we are going to use the distance formula, which is defined below:

(
and
are the two points)
The points in this problem are (2, 5) and (-1, 5). We can find the distance of DC by substituting these values into the distance formula and simplifying, as shown below:

- Substitute values into formula

- Combine like terms and then simplify
to 0

- Compute


- Compute

The length of DC is 3.