Answer:
56 units²
Step-by-step explanation:
Each triangle has an area that is ...
... A = 1/2bh = 1/2·7·4
There are 4 such triangles, so the total area is ...
... 4A = 4(1/2)·7·4 = 2·7·4 = 56 . . . . units²
_____
An area formula customarily used when the diagonals are pependicular to each other is that the area is half the product of their lengths.
... A = (1/2)d1·d2 = (1/2)·14·8 = 56
Answer:
3
Step-by-step explanation:
Evaluate x/4 + 6 (x - 12) where x = 12:
x/4 + 6 (x - 12) = 12/4 + 6 (12 - 12)
Hint: | Reduce 12/4 to lowest terms. Start by finding the GCD of 12 and 4.
The gcd of 12 and 4 is 4, so 12/4 = (4×3)/(4×1) = 4/4×3 = 3:
3 + 6 (12 - 12)
Hint: | Look for the difference of two identical terms.
12 - 12 = 0:
6×0 + 3
Hint: | Any number times zero is zero.
0×6 = 0:
0 + 3
Hint: | Simplify the expression.
Write 3 + 0 as 3:
Answer: 3
Answer:
Minimum 66 feet of molding that he needs.
Step-by-step explanation:
Given that a square ceiling has a diagonal of 23 ft.
If the sides of the square ceiling are 'a' feet, then applying Pythagoras Theorem we can write, a² + a² = 23²
⇒ 2a² = 23²
⇒ a = 16.2634 feet (Approximate)
Now, the perimeter of the square ceiling will be 4a = 65.05 feet.
If the cost of molding along the perimeter of the ceiling is in per foot, then a minimum of 66 feet of molding that he needs. (Answer)
The answer is b. There is a proof, but it is easily got by proving the other cases wrong.
Answer:
The relation is not a function.
Step-by-step explanation:
Since x=1 is in both y=4 and y=−8, the relation (1,4),(3,2),(5,2),(1,−8),(6,7) is not a function.