Answer:
m(∠C) = 18°
Step-by-step explanation:
From the picture attached,
m(arc BD) = 20°
m(arc DE) = 104°
Measure of the angle between secant and the tangent drawn from a point outside the circle is half the difference of the measures of intercepted arcs.
m(∠C) = ![\frac{1}{2}[\text{arc(EA)}-\text{arc(BD)}]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5B%5Ctext%7Barc%28EA%29%7D-%5Ctext%7Barc%28BD%29%7D%5D)
Since, AB is a diameter,
m(arc BD) + m(arc DE) + m(arc EA) = 180°
20° + 104° + m(arc EA) = 180°
124° + m(arc EA) = 180°
m(arc EA) = 56°
Therefore, m(∠C) = 
m(∠C) = 18°
Answer: 104
Step-by-step explanation:
represents
evaluated at
.
Answer:
(b) 
Step-by-step explanation:
When two p and q events are independent then, by definition:
P (p and q) = P (p) * P (q)
Then, if q and r are independent events then:
P(q and r) = P(q)*P(r) = 1/4*1/5
P(q and r) = 1/20
P(q and r) = 0.05
In the question that is shown in the attached image, we have two separate urns. The amount of white balls that we take in the first urn does not affect the amount of white balls we could get in the second urn. This means that both events are independent.
In the first ballot box there are 9 balls, 3 white and 6 yellow.
Then the probability of obtaining a white ball from the first ballot box is:

In the second ballot box there are 10 balls, 7 white and 3 yellow.
Then the probability of obtaining a white ball from the second ballot box is:

We want to know the probability of obtaining a white ball in both urns. This is: P(
and
)
As the events are independent:
P(
and
) = P (
) * P (
)
P(
and
) = 
P(
and
) = 
Finally the correct option is (b) 
In d ratio 5:9 which equals 5+9=14
the total female performers is 63
For men = 5/14*63=5/2*9
=45/2 =22.5
The men would be about 22.5 in the dance recital
Answer:
the value after solving = 16
Step-by-step explanation:
=》8 + (8/1^4) =》8 + 8 ( since 1^4 = 1 )
=》16