Answer:
A transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length,that serves as the physical link between the mRNA and the amino acid sequence of proteins. Transfer RNA does this by carrying an amino acid to the protein synthetic machinery of a cell (ribosome) as directed by the complementary recognition of a 3-nucleotide sequence (codon) in a messenger RNA (mRNA) by a 3-nucleotide sequence (anticodon) of the tRNA. As such, tRNAs are a necessary component of translation, the biological synthesis of new proteins in accordance with the genetic code.
Each mRNA molecule is simultaneously translated by many ribosomes, all reading the mRNA from 5′ to 3′ and synthesizing the polypeptide from the N terminus to the C terminus. The complete mRNA/poly-ribosome structure is called a polysome.
tRNAs in eukaryotes
The tRNA molecules are transcribed by RNA polymerase III. Depending on the species, 40 to 60 types of tRNAs exist in the cytoplasm. Specific tRNAs bind to codons on the mRNA template and add the corresponding amino acid to the polypeptide chain. (More accurately, the growing polypeptide chain is added to each new amino acid bound in by a tRNA.)
The transfer RNAs (tRNAs) are structural RNA molecules. In eukaryotes, tRNA mole are transcribed from tRNA genes by RNA polymerase III. Depending on the species, 40 to 60 types of tRNAs exist in the cytoplasm. Serving as adaptors, specific tRNAs bind to sequences on the mRNA template and add the corresponding amino acid to the polypeptide chain. (More accurately, the growing polypeptide chain is added to each new amino acid brought in by a tRNA.) Therefore, tRNAs are the molecules that actually “translate” the language of RNA into the language of proteins.
Answer:
Women who carry one copy of the mutated gene still have normal color vision because they have another copy, which is not mutated, in the other X chromosome that will be the dominant one. As a result, the women are carriers of the mutated gene but not color blind.
Explanation:
Colorblindness is a sex-linked mutation. A woman has two X chromosomes, while a man has one X chromosome and one Y chromosome. The mutated gene that causes color blindness is on the X chromosome, and it is OPN1LW. So if a woman has one mutated OPN1LW in one of her two X chromosomes, the OPN1LW gene in the other X chromosome will be the dominant one stopping the woman from being colorblind.
In the case of men, as they only have one X chromosome, if there is a mutation on the OPN1LW in the X chromosome, the men will be colorblind because there is no extra copy of the gene, as it is in women.
<span>Meiosis in simple terms is the process by which gametes (sperm and egg) fuse together to produce a fertilised egg. Haploid is a word that refers to how many chromosomes a certain cell has. In this case the gametes have a haploid number of chromosomes, which is half the number a normal cell has. A normal cell has a diploid number of chromosomes. So in meiosis the two gametes come together with their hapoid number of chromosomes each to create an egg that has a diploid (standard) number of chromosomes.</span>
<span>B)<span>The exact location of a particular disease-causing gene can be determined.
</span></span>