Answer:
and
.
Step-by-step explanation:
If we have to different functions like the ones attached, one is a parabolic function and the other is a radical function. To know where
, we just have to equalize them and find the solution for that equation:

So, applying the zero product property, we have:
![x=0\\x^{3}-1=0\\x^{3}=1\\x=\sqrt[3]{1}=1](https://tex.z-dn.net/?f=x%3D0%5C%5Cx%5E%7B3%7D-1%3D0%5C%5Cx%5E%7B3%7D%3D1%5C%5Cx%3D%5Csqrt%5B3%5D%7B1%7D%3D1)
Therefore, these two solutions mean that there are two points where both functions are equal, that is, when
and
.
So, the input values are
and
.
Answer:
(0,-1)
Step-by-step explanation:
You look at where the line intercepts the y axis, which is at (0,-1)
So we are simply adding them
we will set the denominator equal by multiplying both the numerator and denominator
then just adding the numerator while keeping the denominator. look at my work. so your answer is 5/8
Answer:
i believe the relative max coordinate is (2,4)
relative min is (-2,0) and (4,0)
and these are not absolute exterma maybe because there are more than one relative min?
Let's solve your system by substitution.
y
=
−
2
x
+
7
;
y
=
5
x
−
7
Step: Solve
y
=
−
2
x
+
7
for y:
y
=
−
2
x
+
7
Step: Substitute
−
2
x
+
7
for
y
in
y
=
5
x
−
7
:
y
=
5
x
−
7
−
2
x
+
7
=
5
x
−
7
−
2
x
+
7
+
−
5
x
=
5
x
−
7
+
−
5
x
(Add -5x to both sides)
−
7
x
+
7
=
−
7
−
7
x
+
7
+
−
7
=
−
7
+
−
7
(Add -7 to both sides)
−
7
x
=
−
14
−
7
x
−
7
=
−
14
−
7
(Divide both sides by -7)
x
=
2
Step: Substitute
2
for
x
in
y
=
−
2
x
+
7
:
y
=
−
2
x
+
7
y
=
(
−
2
)
(
2
)
+
7
y
=
3
(Simplify both sides of the equation)
Answer: x=2 and y=3