Answers:
- Discrete
- Continuous
- Discrete
- Continuous
==============================================
Explanations:
- This is discrete because we can't have half a basketball, or any non-whole decimal value to represent the number of basketballs. We can only consider positive whole numbers {1,2,3,4,...}. A discrete set like this has gaps between items. In other words, the midpoint of 2 and 3 (the value 2.5) isn't a valid number of basketballs.
- This is continuous because time values are continuous. We can take any two different markers in time, and find a midpoint between them. For example, the midpoint of 5 minutes and 17 minutes is 11 minutes since (5+17)/2 = 22/2 = 11. Continuous sets like this do not have any gaps between items. We can consider this to be densely packed.
- This is the same as problem 1, so we have another discrete function. You either score a bullseye or you don't. We can't score half a bullseye. The only possible values are {1,2,3,4,...}
- This is similar to problem 2. This function is continuous. Pick any two different positive real numbers to represent the amount of gallons of water. You will always be able to find a midpoint between those values (eg: we can have half a gallon) and such a measurement makes sense.
So in short, always try to ask the question: Can I pick two different values, compute the midpoint, and have that midpoint make sense? If so, then you're dealing with a continuous variable. Otherwise, the data is discrete.
For example, in the composition of(f g)(x) = f(g(x)), we need to replace each x found in f(x), the outside function, with g(x), the inside function. Step 3: Simplify the answer. Examples – Now let's use the steps shown above to work through some examples. Example 1: If f(x) = –4x + 9 and g(x) = 2x – 7, find(f g)(x).
In the first octant, the given plane forms a triangle with vertices corresponding to the plane's intercepts along each axis.



Now that we know the vertices of the surface

, we can parameterize it by

where

and

. The surface element is

With respect to our parameterization, we have

, so the surface integral is
Answer:
Step-by-step explanation:
the domain for (2x-1)/(x^2-7) is x not equal to +/- sqrt(7)