<span>Jika dua atau lebih elemen bereaksi, maka akan terbentuk reaksi kombinasi</span>
Answer:
Maleficent is based on the evil fairy godmother character in Charles Perrault's fairy tale Sleeping Beauty, as well as the villainess who appears in the Brothers Grimm's retelling of the story, Little Briar Rose. Maleficent was animated by Marc Davis.
hope it helps
Explanation:
La respuesta en Español a esta pregunta abierta es la siguiente.
Desafortunadamente no se anexa la tabla con los conceptos para crear la presentación.
Sin embargo, la idea que te podemos dar es la siguiente.
Cuando yo era pequeño, mis papás de llevaban a comprar dulces a la tienda después de la hora de la comida. Era mis postre y mi aliciente para hacer la tarea.
Todos los fines me llevaban al parque de colonia para correr, montar en bicicleta y jugar Football Americano. Mi papá era el Quarteback y me lanzaba los pases.
Mi libro favorito eran los cuentos de Disney. Mi mamá me los leía y cuando aprendía a leer, yo leí la mayoría de cuentos como Blanca Nieves, la Bella Durmiente, los Tres Cochinitos, entre muchos otros. Por esa razón, mis canciones favoritas son las de esas películas.
Me acuerdo que en aquellos años había programas infantiles de radio en donde tocaban esas canciones y hacían concursos para niños.
Las tradiciones familiares, además de las que ya mencioné, también incluían is a la iglesia todos los domingos, y visitar a los abuelos. Primero íbamos a casa de los abuelos paternos, y en la noche, a casa de los abuelos maternos.
The theorem:
-Given triangle ABC. Let point D be the midpoint of side AB, point E be the midpoint of side AC, and point F be the midpoint of side BC (Note triangle DEF is the medial triangle).
-Let point J be the foot of the altitude from point C to side AB, point K be the foot of the altitude from point B to side AC, and point L be the foot of the altitude from point A to side BC (Note triangle JKL is the orthic triangle).
-And if point H is the orthocenter of triangle ABC, let point M be the midpoint of HB, point N be the midpoint of HA, and point P be the midpoint of HC (Note triangle MNP is the orthocenter mid-segment triangle).
-Prove points D, E, F, J, K, L, M, N, and P lie on a common circle (called the nine-point circle).
The proof:
-In triangle ABC, since D and E are midpoints of sides AB and AC (by construction), then segment DE is parallel to side BC.
-In triangle BCH, since M and P are midpoints of sides BH and HC (by construction), then segment MP is parallel to side BC.
-Since segment DE is parallel to side BC, and segment MP is parallel to side BC, then segments DE and MP are parallel to each other.
-In triangle BAH, since M and D are midpoints of sides BH and BA (by construction), then segment MD is parallel to side HA.
-In triangle CAH, since E and P are midpoints of sides AC and HC (by construction), then segment EP is parallel to side HA.
-Since segment MD is parallel to side HA, and segment EP is parallel to side HA, then segments MD and EP are parallel to each other.
-Since segment MD is parallel to segment HA, and segment HA lies on segment AL, then segment MD is parallel to segment AL.
-Since segment AL is perpendicular to side BC by construction (AL is the altitude from point A to side BC), and side BC is parallel to segment DE, then segment AL is perpendicular to segment DE.
-Since segment MD is parallel to segment AL, and segment AL is perpendicular to segment DE, then segment MD is perpendicular to segment DE.
-Thus, we have that quadrilateral DEPM is a rectangle. Since the opposite angles of this quadrilateral are supplementary, it follows that the quadrilateral can be inscribed in a circle.
-Similarly, quadrilateral DNPF is a rectangle, and it can be inscribed in a circle.
-Therefore, points D, N, E, P, F, and M are on a common circle, with one diameter of the circle being segment DP, since this segment is a diagonal of both rectangles. The center of this circle, then, is the midpoint of segment DP. Let this center be point O.
-Now, since segment AL is an altitude, angle NLF is a right angle. But segment NF is also a diameter of our circle (it is a diagonal of rectangle DNPF), so it follows that point L must lie on this circle.
-Similarly, points J and K are on the circle.
-Therefore, all nine points D, E, F, J, K, L, M, N, and P lie on the same circle, called the nine-point circle