Given:
The radius of circle is 11 inch
The value for pi is 3
The objective is to find the area of the circle.
The area of the circle is given by the formula:

Substituting ,r = 11

We get:

Hence, the area of the circle is 363 square inches
1 1/3 repeating because you will get the dash over it
Answer:
2(x-2)≥ 24
Step-by-step explanation:
Step-by-step explanation:
Solve for xsin3⁡x+cos3⁡x=1" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: inherit; font-weight: normal; font-stretch: inherit; line-height: normal; font-family: inherit; font-size: 15px; vertical-align: baseline; box-sizing: inherit; display: inline; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">xsin3x+cos3x=1xsin3x+cos3x=1
sin3⁡x+cos3⁡x=1(sin⁡x+cos⁡x)(sin2⁡x−sin⁡x⋅cos⁡x+cos2⁡x)=1(sin⁡x+cos⁡x)(1−sin⁡x⋅cos⁡x)=1" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: inherit; font-weight: normal; font-stretch: inherit; line-height: normal; font-family: inherit; font-size: 15px; vertical-align: baseline; box-sizing: inherit; display: inline; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">sin3x+cos3x=1(sinx+cosx)(sin2x−sinx⋅cosx+cos2x)=1(sinx+cosx)(1−sinx⋅cosx)=1
Solution:
The difference of cubes identity is
if a and b are any two real numbers, then difference of their cubes , when taken individually:
→a³ - b³= (a-b)(a² + a b + b²)→→→Option (D) is true option.
I will show you , how this identity is valid.
Taking R H S
(a-b)(a² +b²+ab)
= a (a² +b²+ab)-b(a² +b²+ab)
= a³ + a b² +a²b -b a² -b³ -ab²
Cancelling like terms , we get
= a³ - b³
= L H S