1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zolol [24]
3 years ago
7

Distance = 40km. Time = 2h 40 min. Calculate the speed.​

Mathematics
1 answer:
PolarNik [594]3 years ago
8 0

Answer: 15 km/h

Step-by-step explanation:

You might be interested in
Solve for n.<br> 7 + 2n<br> ||<br> =<br> submit
Lunna [17]

Answer:

2

Step-by-step explanation:

7+2n = 11

2n = 11-7

2n = 4

n = 4/2

therefore n = 2

8 0
2 years ago
Can someone help me with this?
Mandarinka [93]

Answer:

Step-by-step explanation:

Area of rectangle = length * width

                             = (x + 4) (5x)

                             = x *5x + 4 *5x

                            = 5x² + 20x

Perimeter of rectangle = 2*(length + width)

                                     = 2*(x + 4 + 5x)

                                     = 2*(6x + 4)

                                   = 2*6x + 2 *4

                                     = 12x + 8

4 0
3 years ago
Help please! I need the area of this given figure. The formula is A=1/2(b1+b2)h
Pie

Answer:

108 ft

Correct me, if I am wrong :)

have a great day!

Thanks!

8 0
3 years ago
Read 2 more answers
Find the 2th term of the expansion of (a-b)^4.​
vladimir1956 [14]

The second term of the expansion is -4a^3b.

Solution:

Given expression:

(a-b)^4

To find the second term of the expansion.

(a-b)^4

Using Binomial theorem,

(a+b)^{n}=\sum_{i=0}^{n}\left(\begin{array}{l}n \\i\end{array}\right) a^{(n-i)} b^{i}

Here, a = a and b = –b

$(a-b)^4=\sum_{i=0}^{4}\left(\begin{array}{l}4 \\i\end{array}\right) a^{(4-i)}(-b)^{i}

Substitute i = 0, we get

$\frac{4 !}{0 !(4-0) !} a^{4}(-b)^{0}=1 \cdot \frac{4 !}{0 !(4-0) !} a^{4}=a^4

Substitute i = 1, we get

$\frac{4 !}{1 !(4-1) !} a^{3}(-b)^{1}=\frac{4 !}{3!} a^{3}(-b)=-4 a^{3} b

Substitute i = 2, we get

$\frac{4 !}{2 !(4-2) !} a^{2}(-b)^{2}=\frac{12}{2 !} a^{2}(-b)^{2}=6 a^{2} b^{2}

Substitute i = 3, we get

$\frac{4 !}{3 !(4-3) !} a^{1}(-b)^{3}=\frac{4}{1 !} a(-b)^{3}=-4 a b^{3}

Substitute i = 4, we get

$\frac{4 !}{4 !(4-4) !} a^{0}(-b)^{4}=1 \cdot \frac{(-b)^{4}}{(4-4) !}=b^{4}

Therefore,

$(a-b)^4=\sum_{i=0}^{4}\left(\begin{array}{l}4 \\i\end{array}\right) a^{(4-i)}(-b)^{i}

=\frac{4 !}{0 !(4-0) !} a^{4}(-b)^{0}+\frac{4 !}{1 !(4-1) !} a^{3}(-b)^{1}+\frac{4 !}{2 !(4-2) !} a^{2}(-b)^{2}+\frac{4 !}{3 !(4-3) !} a^{1}(-b)^{3}+\frac{4 !}{4 !(4-4) !} a^{0}(-b)^{4}=a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}

Hence the second term of the expansion is -4a^3b.

3 0
3 years ago
X+y+z=3<br> x-y+z=2<br> x+y-z=1
Dima020 [189]

Answer:

Step-by-step explanation:

I'm assuming you are solving this system for x, y, and z.  Do it this way:

Combine the first 2 equations and the second 2 equations and eliminate the y's.  The first 2 equations:

x + y + z = 3

x - y + z = 2

which solves to

2x + 2z = 5

The second 2 equations:

x - y + z = 2

x + y - z = 1

which solves to

2x = 3 so

x = 3/2 or 1.5

Now sub that x value into the bold equation above to get:

2(1.5) + 2z = 5 and

3 + 2z = 5 and

2z = 2 so

z = 1

Now we plug back in to solve for y:

1.5 + y + 1 = 3 and

2.5 + y = 3 so

y = .5

The solution set then is (1.5, .5, 1) or in fraction form:

(\frac{3}{2},\frac{1}{2},1)

6 0
3 years ago
Other questions:
  • A certain bacterial culture is multiplying in a culture dish, doubling in size every 6 minutes. It takes exactly an hour to fill
    7·1 answer
  • Can someone explain to me taxes?
    12·1 answer
  • Can anyone help me with these questions
    9·2 answers
  • List of 412 multiples of seven
    15·2 answers
  • Richard is planning a trip to Italy he thinks he will need $2750 for the trip if the trip is 40 weeks away which is the best est
    8·1 answer
  • What is 15-4-12? I NEED HELP ASAP! Ps we’re learning about subtracting integers on this problem.
    6·1 answer
  • The slope is -3/2, the y intercept is 1. Write an equation for the linear function, f(x)
    7·1 answer
  • I need help with the number 27 and 28
    15·1 answer
  • (5^4)^6 Rewrite using a single exponent
    8·1 answer
  • Pls i need to pass this class i wna graduate
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!