1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovikov84 [41]
3 years ago
15

24 packs 2 for 9$ what is ratio. how do you find the answer

Mathematics
1 answer:
Jet001 [13]3 years ago
7 0
98 first u spilt 24 = 12 x 9 = 98 the anwer is 98 
You might be interested in
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
The numbers of teams remaining in each round of a single-elimination tennis tournament represent a geometric sequence where an i
Anit [1.1K]

Answer:

a_n = 128\bigg(\dfrac{1}{2}\bigg)^{n-1}

Step-by-step explanation:

We are given the following in the question:

The numbers of teams remaining in each round follows a geometric sequence.

Let a be the first the of the geometric sequence and r be the common ration.

The n^{th} term of geometric sequence is given by:

a_n = ar^{n-1}

a_4 = 16 = ar^3\\a_6 = 4 = ar^5

Dividing the two equations, we get,

\dfrac{16}{4} = \dfrac{ar^3}{ar^5}\\\\4}=\dfrac{1}{r^2}\\\\\Rightarrow r^2 = \dfrac{1}{4}\\\Rightarrow r = \dfrac{1}{2}

the first term can be calculated as:

16=a(\dfrac{1}{2})^3\\\\a = 16\times 6\\a = 128

Thus, the required geometric sequence is

a_n = 128\bigg(\dfrac{1}{2}\bigg)^{n-1}

4 0
3 years ago
Does this table represent a function? Why or why not?
arsen [322]

Answer:

D

Step-by-step explanation:

Because their are more than one ranges

6 0
3 years ago
Read 2 more answers
Helppppppppp!!!!!!!!
Pavlova-9 [17]

Answer:

The answer is D

Step-by-step explanation:

4 0
3 years ago
Angle W and angle X are congruent. If their sum is 121 degrees, what is the measure of angle X?
____ [38]
Angle X = 60.5 degrees
6 0
4 years ago
Other questions:
  • The sum of six and five times a number h
    7·1 answer
  • You placed a 11% down payment on a new home. Given that the amount of the down payment was $18,210.18, determine the price of th
    9·2 answers
  • one month charlie rented 2 movies 3 video games for a total of $21. The next month he rented 4 movies and 8 video games for a to
    14·1 answer
  • Please someone answer for this question
    11·2 answers
  • URGENT, PLEASE HELP!!!!
    6·1 answer
  • Lauren is making candy bags for halloween. She has 24 lollipops, 12 candy bars, and 42 pieces of gum. She wants each bag to have
    10·1 answer
  • 2020-21
    15·1 answer
  • Simplify 4x4-6x2+4-2x4+7x-10.
    10·2 answers
  • Solve the system by using substitution.<br> y = 2x – 10 and - 6x – 2y = -10
    10·2 answers
  • What is the factored form of X^9+27 A (x^3-3)(x^6+3x^3+9) B(x^3+3)(x^6-3x^3+9) C(x-3)^3(x^6+3x^3+9) D(x+3)^3(x^6-3x^3+9)​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!