The exact value of cos120 if the measure 120 degrees intersects the unit circle at point (-1/2,√3/2) is 0.5
<h3>Solving trigonometry identity</h3>
If an angle of measure 120 degrees intersects the unit circle at point (-1/2,√3/2), the measure of cos(120) can be expressed as;
Cos120 = cos(90 + 30)
Using the cosine rule of addition
cos(90 + 30) = cos90cos30 - sin90sin30
cos(90 + 30) = 0(√3/2) - 1(0.5)
cos(90 + 30) = 0 - 0.5
cos(90 + 30) = 0.5
Hence the exact value of cos120 if the measure 120 degrees intersects the unit circle at point (-1/2,√3/2) is 0.5
Learn more on unit circle here: brainly.com/question/23989157
#SPJ1
As an equation, we have:
69+42=5+(146-x)
You just have to simplify:
111=5+(146-x)
106=146-x
-40=-x
40=x
Your unknown number is 40
The answer is the second image from left to right (B). Examples of direct and inverse variations are showed in the image below. :)
Answer:
x = 8/7
Step-by-step explanation:
Step 1: Convert to math
7x - 5 = 3
Step 2: Solve for <em>x</em>
- Add to both sides: 7x = 8
- Divide both sides by 7: x = 8/7
Answer:
18.28 m
Step-by-step explanation:
Given the flower garden in the question :
The shape is composite and can be divided into 2 semicirles and rectangle
The perimeter of a semicircle is the Circumference of the semicircle = πr
Hence, 2 semicirles = 2πr
Radius of semicircle = 2/2 = 1
Perimeter = 2 * 3.14 * 1² = 2 * 3.14 * 1 = 6.28 m
The perimeter of rectangle; length and width are 6m and 2 m respectively :
Perimeter of rectangle = 2(l + w) = 2(4+2) = 2(6) = 12m
Tve perimeter of garden = 6.28 + 12 = 18.28 m