Answer:
<u>Answer</u><u> </u><u>→</u><u> </u><u>Student</u><u> </u><u>A</u><u> </u><u>was</u><u> </u><u>right</u><u>.</u>
![{ \tt{ \sqrt[3]{1944} = \sqrt[3]{(72 \times 27)} }} \\ \\ = { \tt{ \sqrt[3]{72} \times \sqrt[3]{27} }} \\ \\ = { \tt{ \sqrt[3]{72} \times 3}} \\ \\ = { \underline{ \tt{ \: 3 \sqrt[3]{72} } \: }}](https://tex.z-dn.net/?f=%7B%20%5Ctt%7B%20%5Csqrt%5B3%5D%7B1944%7D%20%20%3D%20%20%5Csqrt%5B3%5D%7B%2872%20%5Ctimes%2027%29%7D%20%7D%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%7B%20%5Ctt%7B%20%5Csqrt%5B3%5D%7B72%7D%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B27%7D%20%20%7D%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%7B%20%5Ctt%7B%20%5Csqrt%5B3%5D%7B72%7D%20%20%5Ctimes%203%7D%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%7B%20%5Cunderline%7B%20%5Ctt%7B%20%5C%3A%203%20%5Csqrt%5B3%5D%7B72%7D%20%7D%20%5C%3A%20%7D%7D)
Answer:cant see it
Step-by-step explanation:
To solve this problem you must apply the proccedure shown below:
1. The problem asks for the area of a cross section that is parallel <span>to face ABCD. As is parallel to that face, you have can calculate its area as following:
A=12 cm x 6 cm
2. Therefore, the result is:
A=72 cm</span>²
The answer is: T<span>he area of a cross section that is parallel to face ABCD is 72 cm</span>².
1 chair is 79.99
40% discount
79.99 ÷ 100 =0.7999
0.7999 × 60 = 47.994
47.994 rounded down is $47.99
79.99-47.99=30.00
he saved $30
Answer:
A because (0,-6) is the y-intercept so you start at the point you know. Then because slope is a rise over run fraction the slope can also be written as 2/1 which is rise 2 over 1.
Step-by-step explanation:
w