Answer:
The solutions of the equation are 0 , π
Step-by-step explanation:
* Lets revise some trigonometric identities
- sin² Ф + cos² Ф = 1
- tan² Ф + 1 = sec² Ф
* Lets solve the equation
∵ tan² x sec² x + 2 sec² x - tan² x = 2
- Replace sec² x by tan² x + 1 in the equation
∴ tan² x (tan² x + 1) + 2(tan² x + 1) - tan² x = 2
∴ tan^4 x + tan² x + 2 tan² x + 2 - tan² x = 2 ⇒ add the like terms
∴ tan^4 x + 2 tan² x + 2 = 2 ⇒ subtract 2 from both sides
∴ tan^4 x + 2 tan² x = 0
- Factorize the binomial by taking tan² x as a common factor
∴ tan² x (tan² x + 2) = 0
∴ tan² x = 0
<em>OR</em>
∴ tan² x + 2 = 0
∵ 0 ≤ x < 2π
∵ tan² x = 0 ⇒ take √ for both sides
∴ tan x = 0
∵ tan 0 = 0 , tan π = 0
∴ x = 0
∴ x = π
<em>OR</em>
∵ tan² x + 2 = 0 ⇒ subtract 2 from both sides
∴ tan² x = -2 ⇒ no square root for negative value
∴ tan² x = -2 is refused
∴ The solutions of the equation are 0 , π
Answer:
3 (28 n - 9)
Step-by-step explanation:
Simplify the following:
-9 (1 - 10 n) - 2 (3 n + 9)
-9 (1 - 10 n) = 90 n - 9:
90 n - 9 - 2 (3 n + 9)
-2 (3 n + 9) = -6 n - 18:
90 n + -6 n - 18 - 9
Grouping like terms, 90 n - 6 n - 18 - 9 = (90 n - 6 n) + (-9 - 18):
(90 n - 6 n) + (-9 - 18)
90 n - 6 n = 84 n:
84 n + (-9 - 18)
-9 - 18 = -27:
84 n + -27
Factor 3 out of 84 n - 27:
Answer: 3 (28 n - 9)
Which pair shows equivalent expressions?
A.2(2/5x + 2)=2 2/5x + 1
B.2(2/5x + 2)=4/5x + 4
C.2(2/5x + 4)=4/5x + 2
D.2(2/5x + 4)=2 2/5x + 8
Solution:

Let us distribute 2 inside the parenthesis.
That is, we use distributive property:
a(b+c)=ab+ac

So, 
Answer:Option (b)

Applying distributive property, a(b+c)=ab+ac



So, Option (B) is correct.
The scale factor applied to the model is 8000. 8000 times one equals 8000
Answer:
i think
x=36 and y=13
Step-by-step explanation: