Given that triangle GHI and JKL are similar, the measure of side JK to the nearest tenth is 43.7
<h3>
What is the measure of side JK?</h3>
Similar triangles are triangles that have the same shape and are proportional, but their sizes may vary.
Given that;
- Triangle GHI is similar triangle JKL
- Side IH = 13
- Side GH = 9.8
- Side LK = 58
- Side JK = ?
Since the triangle are similar;
IH/GH = LK/JK
Plug in the given values and solve for side JK.
13/9.8 = 58/JK
Cross multiply
13 × JK = 58 × 9.8
13 × JK = 568.4
JK = 568.4 / 13
JK = 43.7
Given that triangle GHI and JKL are similar, the measure of side JK to the nearest tenth is 43.7.
Learn more about similar triangles here: brainly.com/question/25882965
#SPJ1
Answer:
4737.33333333
Step-by-step explanation:
Answer:
We can claim with 95% confidence that the proportion of executives that prefer trucks is between 19.2% and 32.8%.
Step-by-step explanation:
We have a sample of executives, of size n=160, and the proportion that prefer trucks is 26%.
We have to calculate a 95% confidence interval for the proportion.
The sample proportion is p=0.26.
The standard error of the proportion is:
The critical z-value for a 95% confidence interval is z=1.96.
The margin of error (MOE) can be calculated as:

Then, the lower and upper bounds of the confidence interval are:

The 95% confidence interval for the population proportion is (0.192, 0.328).
We can claim with 95% confidence that the proportion of executives that prefer trucks is between 19.2% and 32.8%.
Answer:
Create a single variable linear equation that has no solution. Solve the equation algebraically to prove that it does not have a solution.
Create a single variable linear equation that has one solution. Solve the equation algebraically to prove that there is one distinct solution for the equation.
Create a single variable linear equation that has infinitely many solutions. Solve the equation algebraically to prove that there is an infinite number of solutions for the equation
Step-by-step explanation: