1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill115 [55]
3 years ago
10

Would appreciate the help 24 points

Mathematics
1 answer:
andre [41]3 years ago
6 0

Answer:

13) Rectangle

14) parallelogram

15) co ordinates areD (0,a) andE (c,b)

16) co ordinates are D(0,b) and E(a,0)

17)(-1,1) (4,1) (-1,4)

18)(0,0) (a,0) (a,a) (0,a)

Step-by-step explanation:

<h3>13)</h3><h3>Rectangle</h3>

The opposite sides of a rectangle are parallel and equal

left height = right height

(by using distance formula)

(0,3),(2,-2) = (5,5),(7,0)

√(2-0)²+(-2-3)² = √(7-5)²+(0-5)²

√(2)²+(-5)² = √(2)²+(-5)²

√4+25 = √(2)²+(-5)²

√29 = √29 hence equal

<h3>14)</h3><h3>parallelogram</h3>

The opposite sides of a rectangle are not equal

left height = right height

(by using distance formula)

(0,0),(3,-4) = (3,4),(7,0)

√(3-0)²+(-4-0)² = √(7-3)²+(0-4)²

√(3)²+(-4)² = √(5)²+(-4)²

√9+16 = √(25)+(16)

√(25) ≠√41

5 ≠ √41

<h3>15)</h3><h3>co ordinates are D(0,a) and E(c,b)</h3><h3>16)</h3><h3>co ordinates are D(0,b) and E(a,0) </h3>

since rhombus have equal opposite sides

<h3>17)</h3><h3>(-1,1) (4,1) (-1,4)</h3><h3>18)</h3><h3>(0,0) (a,0) (a,a) (0,a)</h3><h3 />

You might be interested in
Is the function x^3+7x even or odd?
Nimfa-mama [501]

Answer:

odd

Step-by-step explanation:

i looked it up

7 0
2 years ago
Please help on 10 11 and 12
erastova [34]
Try multiplaying all sides
4 0
3 years ago
Use cylindrical coordinates to evaluate the triple integral ∭ where E is the solid bounded by the circular paraboloid z = 9 - 16
4vir4ik [10]

Answer:

\mathbf{\iiint_E  E \sqrt{x^2+y^2} \ dV =\dfrac{81 \  \pi}{80}}

Step-by-step explanation:

The Cylindrical coordinates are:

x = rcosθ, y = rsinθ and z = z

From the question, on the xy-plane;

9 -16 (x^2 + y^2) = 0 \\ \\  16 (x^2 + y^2)  = 9 \\ \\  x^2+y^2 = \dfrac{9}{16}

x^2+y^2 = (\dfrac{3}{4})^2

where:

0 ≤ r ≤ \dfrac{3}{4} and 0 ≤ θ ≤ 2π

∴

\iiint_E  E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} \int ^{\dfrac{3}{4}}_{0} \int ^{9-16r^2}_{0} \ r \times rdzdrd \theta

\iiint_E  E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} \int ^{\dfrac{3}{4}}_{0} r^2 z|^{z= 9-16r^2}_{z=0}  \ \ \ drd \theta

\iiint_E  E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} \int ^{\dfrac{3}{4}}_{0} r^2 ( 9-16r^2})  \ drd \theta

\iiint_E  E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0} \int ^{\dfrac{3}{4}}_{0}  ( 9r^2-16r^4})  \ drd \theta

\iiint_E  E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0}   ( \dfrac{9r^3}{3}-\dfrac{16r^5}{5}})|^{\dfrac{3}{4}}_{0}  \ drd \theta

\iiint_E  E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0}   ( 3r^3}-\dfrac{16r^5}{5}})|^{\dfrac{3}{4}}_{0}  \ drd \theta

\iiint_E  E \sqrt{x^2+y^2} \ dV = \int^{2 \pi}_{0}   ( 3(\dfrac{3}{4})^3}-\dfrac{16(\dfrac{3}{4})^5}{5}}) d \theta

\iiint_E  E \sqrt{x^2+y^2} \ dV =( 3(\dfrac{3}{4})^3}-\dfrac{16(\dfrac{3}{4})^5}{5}}) \theta |^{2 \pi}_{0}

\iiint_E  E \sqrt{x^2+y^2} \ dV =( 3(\dfrac{3}{4})^3}-\dfrac{16(\dfrac{3}{4})^5}{5}})2 \pi

\iiint_E  E \sqrt{x^2+y^2} \ dV =(\dfrac{81}{64}}-\dfrac{243}{320}})2 \pi

\iiint_E  E \sqrt{x^2+y^2} \ dV =(\dfrac{81}{160}})2 \pi

\mathbf{\iiint_E  E \sqrt{x^2+y^2} \ dV =\dfrac{81 \  \pi}{80}}

4 0
3 years ago
If a is directly proportional to b/2 and a=1 when b=10, what is the value of a when b=35
iris [78.8K]
The value of a would be 3.5, as a=1 when b=10 means that a is worth 1/10 of b's value. 
5 0
3 years ago
What is the value of x in the equation (StartFraction one-half EndFractionx + 12) = StartFraction one-half EndFraction(StartFrac
anastassius [24]

Answer:

x =-24

Step-by-step explanation:

Given

(\frac{2}{3})(\frac{1}{2}x + 12) = (\frac{1}{2})(\frac{1}{3}x + 14) - 3

Required

Solve for x

(\frac{2}{3})(\frac{1}{2}x + 12) = (\frac{1}{2})(\frac{1}{3}x + 14) - 3

Open all brackets

\frac{2}{3}*\frac{1}{2}x + \frac{2}{3}*12 = \frac{1}{2}*\frac{1}{3}x + \frac{1}{2}*14 - 3

\frac{2 * 1}{3 *2}x + \frac{2 * 12}{3}= \frac{1 * 1}{2 * 3}x + \frac{1 * 14}{2} - 3

\frac{1}{3}x + \frac{24}{3}= \frac{1}{6}x + \frac{14}{2} - 3

\frac{1}{3}x +8= \frac{1}{6}x + 7 - 3

Collect like terms

\frac{1}{3}x - \frac{1}{6}x =7 - 3 -8

\frac{1}{3}x - \frac{1}{6}x =-4

Solve fraction

\frac{2-1}{6}x =-4

\frac{1}{6}x =-4

Multiply both sides by 6

6 * \frac{1}{6}x =-4 * 6

x =-4 * 6

x =-24

8 0
3 years ago
Other questions:
  • A linear pair of angles is an example of
    13·1 answer
  • What is the answer to 2/5 + 7/20 and 6/15 + 14/40
    5·2 answers
  • If 16=x/20 then x equals..<br><br>please explain the steps on how to do this problem
    14·2 answers
  • The ages of five friends are 20,31,28,31 and 25. How many of the friends are older than the average (arithmetic mean) age?
    8·1 answer
  • Find the solution for this system of equations. 2x − 3y = 2 x = 6y − 5<br><br> x =<br> y =
    5·2 answers
  • Parking at a large university can be extremely difficult at times. One particular university is trying to determine the location
    10·1 answer
  • Find the value of the expression: 2xy+2x^2 for x=−2.5 and y=−7.5
    11·1 answer
  • Answer this for me please
    9·1 answer
  • Find the exact value of tan 0.
    5·1 answer
  • Is the point (0,0) a solution for this system?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!