Answer:
∠1 + ∠2 + ∠3 = 180°
Step-by-step explanation:
Given : AB II XC
To Show : ∠1 + ∠2 + ∠3 = 180°
Proof: Here, given that AB is parallel to the line XC
⇒ ∠4 = ∠2 (Pair of Alternate angles as AB II XC) ......... (1)
and ∠5 = ∠3 (Pair of Alternate angles as AB II XC) ........... (2)
Now, ∠1 + ∠4 + ∠5 = 180° ( Straight Angle)
But, from above (1) and (2)
∠1 + ∠2 + ∠3 = 180° ( as ∠4 = ∠2, ∠5 = ∠3)
Hence, ∠1 + ∠2 + ∠3 = 180°
Hence Proved.
Answer:

Step-by-step explanation:

<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em>
<em>brainliest</em><em> </em><em>appreciated</em>
<em>good</em><em> </em><em>luck</em><em>!</em><em> </em><em>have</em><em> </em><em>a</em><em> </em><em>nice</em><em> </em><em>day</em><em>!</em>
Answer:
Look in Step by Step Explanation
Step-by-step explanation:
3)SOHCAHTOA
tan=opposite/adjacent
tan(20)=x/83
83tan(20)=x
x=30.209
2) SOHCAHTOA
Tangent=opposite/adjacent
Tan(62)=x/8
8tan(62)=x
x=15.04
3)SOHCAHTOA
Sin=opposite/hypotonouse
sin(25)=30/x
x=30/sin(25)
x=70.986
Answer:
1 meter wide
Step-by-step explanation:
5+5=10
2/2=1
Answer:
0.3 with the hat ? the answer is first no, then it's a repeated decimal.
Step-by-step explanation: