Answer:
At a certain pizza parlor,36 % of the customers order a pizza containing onions,35 % of the customers order a pizza containing sausage, and 66% order a pizza containing onions or sausage (or both). Find the probability that a customer chosen at random will order a pizza containing both onions and sausage.
Step-by-step explanation:
Hello!
You have the following possible pizza orders:
Onion ⇒ P(on)= 0.36
Sausage ⇒ P(sa)= 0.35
Onions and Sausages ⇒ P(on∪sa)= 0.66
The events "onion" and "sausage" are not mutually exclusive, since you can order a pizza with both toppings.
If two events are not mutually exclusive, you know that:
P(A∪B)= P(A)+P(B)-P(A∩B)
Using the given information you can use that property to calculate the probability of a customer ordering a pizza with onions and sausage:
P(on∪sa)= P(on)+P(sa)-P(on∩sa)
P(on∪sa)+P(on∩sa)= P(on)+P(sa)
P(on∩sa)= P(on)+P(sa)-P(on∪sa)
P(on∩sa)= 0.36+0.35-0.66= 0.05
I hope it helps!
<h3>
Answer: Largest value is a = 9</h3>
===================================================
Work Shown:
b = 5
(2b)^2 = (2*5)^2 = 100
So we want the expression a^2+3b to be less than (2b)^2 = 100
We need to solve a^2 + 3b < 100 which turns into
a^2 + 3b < 100
a^2 + 3(5) < 100
a^2 + 15 < 100
after substituting in b = 5.
------------------
Let's isolate 'a'
a^2 + 15 < 100
a^2 < 100-15
a^2 < 85
a < sqrt(85)
a < 9.2195
'a' is an integer, so we round down to the nearest whole number to get 
So the greatest integer possible for 'a' is a = 9.
------------------
Check:
plug in a = 9 and b = 5
a^2 + 3b < 100
9^2 + 3(5) < 100
81 + 15 < 100
96 < 100 .... true statement
now try a = 10 and b = 5
a^2 + 3b < 100
10^2 + 3(5) < 100
100 + 15 < 100 ... you can probably already see the issue
115 < 100 ... this is false, so a = 10 doesn't work
<span>x=<span><span><span><span>−200</span>347</span><span> and </span></span>y</span></span>=<span><span>−600</span><span>347</span></span>
Answer:
Lawyer and 191,000
Step-by-step explanation:
The simplest form of an interest equation is A = P(1+rt)
where A = the total amount of money at the end, P = the principal (or amount of money you started with), r = the rate in percent, and t = the time in years.
In this case, P = 15000, r = 0.03 (because 3% in decimal form is 0.03), and t = 1:

So, after 1 year he will get $15450 back, making him $450 more.