The smallest positive integer that the intermediate value theorem guarantees a zero exists between 0 and a is 3.
What is the intermediate value theorem?
Intermediate value theorem is theorem about all possible y-value in between two known y-value.
x-intercepts
-x^2 + x + 2 = 0
x^2 - x - 2 = 0
(x + 1)(x - 2) = 0
x = -1, x = 2
y intercepts
f(0) = -x^2 + x + 2
f(0) = -0^2 + 0 + 2
f(0) = 2
(Graph attached)
From the graph we know the smallest positive integer value that the intermediate value theorem guarantees a zero exists between 0 and a is 3
For proof, the zero exists when x = 2 and f(3) = -4 < 0 and f(0) = 2 > 0.
<em>Your question is not complete, but most probably your full questions was</em>
<em>Given the polynomial f(x)=− x 2 +x+2 , what is the smallest positive integer a such that the Intermediate Value Theorem guarantees a zero exists between 0 and a ?</em>
Thus, the smallest positive integer that the intermediate value theorem guarantees a zero exists between 0 and a is 3.
Learn more about intermediate value theorem here:
brainly.com/question/28048895
#SPJ4
Answer:
-10,-13,-16 and importance of being in a good night friends ni pta nhi hai to you

The cosine function is negative in 2nd and 3rd quadrants, So you know that you will have 2 solutions. One between pi/2 and pi, the other between pi and 3pi/2.
Refer to a unit circle to find that

Final Answer:
second-period class average:
55+70+450+480+170+270+95 = 1590
1590/20 = 79.5
sixth-period class average:
65+225+480+595+270+190 = 1825
1825/20 = 91.25
on average, students in the sixth period class scored higher
Complete question :
A right triangle has side lengths AC = 7 inches, BC = 24 inches, and AB = 25 inches.
What are the measures of the angles in triangle ABC?
a) m∠A ≈ 46.2°, m∠B ≈ 43.8°, m∠C ≈ 90°
b) m∠A ≈ 73.0°, m∠B ≈ 17.0°, m∠C ≈ 90°
c) m∠A ≈ 73.7°, m∠B ≈ 16.3°, m∠C ≈ 90°
d) m∠A ≈ 74.4°, m∠B ≈ 15.6°, m∠C ≈ 90°
Answer:
c) m∠A ≈ 73.7°, m∠B ≈ 16.3°, m∠C ≈ 90°
Step-by-step explanation:
Given:
Length AC = 7 inches
Length BC = 24 inches
Length AB = 25 inches
Since it is a right angle triangle,
m∠C = 90°
To find the measures of the angle in ∠A and ∠B, we have :
For ∠A:
∠A = 73.7°
For ∠B:

∠B = 16.26 ≈ 16.3°
Therefore,
m∠A = 73.7°
m∠B = 16.3°
m∠C = 90°