Answer:
Oxygen, carbon dioxyde
Explanation:
After oxygen was distributed to somatic cells, there are higher concentraion of carbon dioxyde. Therefore, it will move out from our cell to be exhaled by lungs. Vice versa for oxygen
Here, given-
homozygous alleles 'a' have a frequency of 0.3.
Also the alleles are in equilibrium in a Hardy-Weinberg population. The frequency of individuals that are homozygous for this allele are= 0.49.
The Hardy-Weinberg equilibrium can be defined as the principle which states that the variation in the genetic makeup of a population remains constant and unchanged till there are no external interferences, influencing the population.
Calculation-

Then to find the frequency of the individuals homozygous for this allele the following formula needs to be used-


Thus, the individuals homozygous for the allele can be calculated by 
Learn more about the Hardy-Weinberg equilibrium here-
brainly.com/question/16823644
#SPJ4
Answer:
Thymine in DNA occurs as the result of thymidylate synthase creating deoxythymidine monophosphate (dTMP), which then undergoes phosphorylation to deoxythymidine diphosphate (dTDP), then to Deoxythymidine triphosphate (dTTP), and incorporated into DNA by the DNA polymerase (DNA pol). Thymine in tRNA arises post-transcriptionally, by S-adenosylmethionine-dependent methylation of a uridine 5'-monophosphate (UMP) residue in RNA.
Explanation:
Thymidylate synthase is an enzyme involved in <em>de novo</em> DNA synthesis. This enzyme (thymidylate synthase) catalyzes the transfer of the one-carbon group from 5,10-methylene-tetrahydrofolate (5,10-CH2-THF) to deoxyuridine monophosphate (dUMP) and subsequent methylation to produce deoxythymidine monophosphate (dTMP), which is then phosphorylated to deoxythymidine triphosphate (dTTP) by kinases and incorporated into DNA. On the other hand, specific tRNA methylases catalyze the methylation of transference RNA (tRNA) by using S-adenosylmethionine as a methyl donor. Since tRNA methylation is a post-transcriptional modification, this chemical reaction is considered an epitranscriptomic modification on the RNA molecule.