Answer:
.
Explanation:
The frequency
of a wave is equal to the number of wave cycles that go through a point on its path in unit time (where "unit time" is typically equal to one second.)
The wave in this question travels at a speed of
. In other words, the wave would have traveled
in each second. Consider a point on the path of this wave. If a peak was initially at that point, in one second that peak would be
How many wave cycles can fit into that
? The wavelength of this wave
gives the length of one wave cycle. Therefore:
.
That is: there are
wave cycles in
of this wave.
On the other hand, Because that
of this wave goes through that point in each second, that
wave cycles will go through that point in the same amount of time. Hence, the frequency of this wave would be
Because one wave cycle per second is equivalent to one Hertz, the frequency of this wave can be written as:
.
The calculations above can be expressed with the formula:
,
where
represents the speed of this wave, and
represents the wavelength of this wave.
The answer to this item is letter "C. counterculture". Those who are believers in this concept persuade individuals to run counter or move away from the norms that are preset or established in the society. The counterculture may also pertain to certain beliefs, styles, values, and attitudes that is varied from the prevailing culture.
The temperatures would change and the water would become luke warm <span />
The Energy flux from Star B is 16 times of the energy flux from Star A.
We have Two stars - A and B with 4900 k and 9900 k surface temperatures.
We have to determine how many times larger is the energy flux from Star B compared to the energy flux from Star A.
<h3>State Stephen's Law?</h3>
Stephens law states that if E is the energy radiated away from the star in the form of electromagnetic radiation, T is the surface temperature of the star, and σ is a constant known as the Stephan-Boltzmann constant then-

Now -
Energy emitted per unit surface area of Star is called Energy flux. Let us denote it by E. Then -

Now -
For Star A →
= 4900 K
For Star B →
= 9900 K
Therefore -

2.02 = 2 (Approx.)
Now -
Assume that the energy flux of Star A is E(A) and that of Star B is E(B). Then -

E(B) = E(A) x 
E(B) = E(A) x 
E(B) = 16 E(A)
Hence, the Energy flux from Star B is 16 times of the energy flux from Star A.
To learn more about Stars, visit the link below-
brainly.com/question/13451162
#SPJ4