PV = 400 x 0.08 = 32 J
Hope this helps
Answer:
a) 17.49 seconds
b) 13.12 seconds
c) 2.99 m/s²
Explanation:
a) Acceleration = a = 1.35 m/s²
Final velocity = v = 85 km/h = 
Initial velocity = u = 0
Equation of motion

Time taken to accelerate to top speed is 17.49 seconds.
b) Acceleration = a = -1.8 m/s²
Initial velocity = u = 23.61\ m/s
Final velocity = v = 0

Time taken to stop the train from top speed is 13.12 seconds
c) Initial velocity = u = 23.61 m/s
Time taken = t = 7.9 s
Final velocity = v = 0

Emergency acceleration is 2.99 m/s² (magnitude)
This topic is actually quite controversial, but the answer in this case would be C.
Just some food for thought, the 2nd law of thermodynamics entropy of the universe is always increasing, but that doesn't necessarily mean that earth's entropy has to. As long as the net change in entropy of the universe is increasing it doesn't matter if one planet is decreasing a nominal amount. Next, Earth as said is not a closed system and you could argue that the sunlight and energy from the sun is increasing the total energy within the system that is earth meaning that it is increasing in entropy. Next, if you consider increasing entropy as an increase in the number of possible permutations that the universe or parts of the universe can take, then it is completely possible that an ordered planet and life is possible, although rare. This theory explains why there are so many life forms and why entropy is actually increasing when divergent evolution occurs.
Answer:
The top layer is exosphere. The fourth is the Thermosphere. The middle layer is the mesophere. The second layer is the Stratospere. the lowest layer is the troposphere
Explanation:
Classically and Newtonianly, it's the sum of the chemical energy if any,
the electrical energy if any, the thermal energy if any, and the mechanical
energy consisting of potential and kinetic energy if any.
The mechanical energy, consisting of potential and kinetic energy if any, is
0.001 x [ (acceleration of gravity x height) + (1/2) (speed)² ] .
But I've got a sneaky hunch that you're not talking about any of these.
You want to know how much [ <em><u>mc</u>² </em>] there is in 1 gram of mass. No prob.
E = m c² = (0.001) x (3 x 10⁸)² = <em>9 x 10¹³ joules</em>
That's the energy that a 1,000-watt toaster uses
in <em>2,852 years</em> of continuous toasting.